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Abstract

Measuring the reflectivity and transmissivity of microwave devices has
many applications in science and industry. Measurement tasks range from
component testing for cell phones to characterizing carbon nano tube
transistors. There are commercial solutions for most measurement tasks.
Nonetheless, there will always be the question: What is the accuracy of
such measurements and how can it be improved? In coaxial S-parameter
measurements, the largest error contributions come from the connectors.
The most precise connectors, laboratory precision connectors, have to
be examined to improve measurement accuracy. A related topic is the
question how reflection and transmission can be measured accurately with
snap-on connectors.

Probably the most fundamental requirement to answer these questions
is to understand how electromagnetic waves propagate in coaxial lines.
There are many publications on this topic, but still the presented theories
fail to accurately predict wave propagation in coaxial lines with plated
rough surfaces for frequencies above 50 GHz. A new method to predict
the phase constant and the losses in such realistic coaxial lines is pre-
sented. Using a 2D field simulator, the effects of roughness and plating
are converted to artificial material parameters. These are used to define
a coaxial line problem with smooth conductors, which can be solved with
already known algorithms. The method presented here is far more accu-
rate than existing techniques and can thus be used for the computation
of calibration standards.

Here only standards which completely consist of metal are considered
because they can be characterized most accurately. Air lines and offset
shorts are such standards. Both are connected with a connector to the
vector network analyzer (VNA). This connection is usually neglected for
the calculation of calibration standard parameters, but it is essential for
frequencies higher than 50 GHz. For this reason a 3 D field simulation of
the slotted 1.85 mm connector is done. Careful validation of the simulation
based on (A) comparing the results of two different numerical techniques,
(B) parameter studies and (C) meshing convergence are essential for the
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ii ABSTRACT

derived S-parameter model of the connector. With a software implemen-
tation of this model one can compute the reflection coefficient of a given
connector within seconds. Cascading the model of the connector with
the model of the transmission line yields the S-parameters of an air line
standard. A similar combination, extended by the model of a short plane,
yields the reflection coefficient of an offset short.

Such transmission and reflection standards are used for the calibration
of a VNA. Thereby the VNA is described by a simplified model which con-
tains the main paths of wave propagation in the VNA. Given the VNA
model, calibration means finding the coefficients of wave propagation for
each path. One often measures more standards than necessary to deter-
mine the coefficients. The inevitably occurring inconsistencies between
standards, VNA model and measured raw S-parameters are usually at-
tributed to the definition of the standards. The calibration algorithm
presented here attributes the occurring errors not only to the definition
of the standards but as well to the simplified model of the VNA. Temper-
ature drift and cable movement are the most prominent among numerous
reasons why the simplifying assumptions for the model of the VNA are not
correct. Thus the new error model of calibration is closer to reality. As
a next step, the error model is converted into an equation for calibration
by the application of Bayes law. The resulting algorithm uses nonlinear
optimization and Monte Carlo integration for the computation of the cal-
ibration coefficients. The realistic modeling of uncertainties results in a
more stable and accurate calibration algorithm.

The calibration of a VNA with snap-on connectors requires special mea-
sures. In fact, performing a usual calibration with snap-on connectors is
almost senseless because snap-on connections are much less repeatable
than laboratory precision connections. It is shown that a much better ap-
proach is using a characterized adapter from precision to snap-on connec-
tor. The respective advantage in terms of accuracy is quantified by com-
paring various traditional calibration methods and the adapter method by
Monte Carlo simulation (MCS). A crucial point is the characterization of
the adapters. Two methods are investigated and compared against each
other. The first is a method which uses only short, open and thru, the
second is a method which uses beadless adapters. The beadless adapters
are characterized by mechanical measurements and subsequent modeling.
The accuracy achieved with the beadless adapter method is superior to
the first method, which uses the short, open and thru standards.



Zusammenfassung

In Industrie und Wissenschaft müssen häufig Transmission und Re-
flexion an Mikrowellenkomponenten gemessen werden. Die Messaufgaben
sind sehr vielfältig und reichen von Messungen an Mobilfunkkomponenten
bis zur Charakterisierung von Carbon Nanotube Transistoren. Obwohl es
für die meisten Messaufgaben kommerzielle Lösungen gibt, wird folgen-
de Frage immer wieder gestellt: Was ist die Genauigkeit der Messungen
und wie kann sie erhöht werden? Für koaxiale S-Parameter Messungen er-
gibt sich die Antwort meist aus einer genauen Analyse der Stecker. Durch
eine Charakterisierung der Stecker kann die Messgenauigkeit meist deut-
lich erhöht werden, was sowohl für die genauesten verfügbaren Stecker,
sogenannte Präzisionsstecker, als auch für auf Industrieanwendungen aus-
gelegte Schnappverschlussstecker funktioniert.

Da sich ein Stecker im Idealfall wie ein Stück Leitung verhält, ist es sinn-
voll zunächst die Fortpflanzung elektromagnetischer Wellen in Koaxiallei-
tungen zu studieren. Zu diesem Thema gibt es viele Veröffentlichungen,
aber mit den gängigen Theorien kann man die Fortpflanzung von Wellen in
Koaxialleitungen mit rauen beschichteten Oberflächen nur sehr ungenau
berechnen. Eine neue und genauere Methode, um die Phasenkonstante
und die Verluste einer solchen realitätsnahen Koaxialleitung zu bestim-
men, besteht darin, die Auswirkungen von Rauhigkeit und Beschichtung
mit einem 2D Feldsimulationsprogramm in künstliche Materialparame-
ter zu konvertieren. Diese werden wiederum benutzt, um ein Koaxiallei-
tungsproblem mit glatten Leitern zu definieren, welches mit schon be-
kannten Algorithmen gelöst werden kann. Die hier präsentierte Methode
ist weitaus genauer als bestehende Techniken und kann deshalb zur Be-
rechnung von Kalibrationsstandards eingesetzt werden.

Ganz aus Metall bestehende Standards wie Luftleitungen und Offset
Shorts lassen sich am genauesten charakterisieren. Beiden Standardtypen
ist gemein, daß sie mit Steckern an den Netzwerkanalysator (NWA) ange-
schlossen werden, welche allerdings bei der Berechnung von Kalibrations-
standards normalerweise nicht berücksichtigt werden. Um diesen Fehler
in der Definition der Standards zu beheben, wurde eine 3D Feldsimu-
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lation des geschlitzten 1.85 mm Steckers durchgeführt. Eine sorgfältige
Überprüfung der Simulationsergebnisse anhand von Vergleichen zwischen
verschiedenen numerischen Methoden, Parameterstudien und Konvergenz-
studien ist sehr wichtig für die Genauigkeit der Ergebnisse. Durch Varia-
tion der Steckerdimensionen kann aus den Simulationsergebnissen eine
Datenbank aufgebaut werden, die mittels Interpolation die S-Parameter
eines beliebigen Steckers innerhalb weniger Sekunden bereitstellt. Dieses
Modell erlaubt auf einfache Art und Weise die komplette Beschreibung
eines Standards. So wird für einen Luftleitungsstandard das Modell des
linken und rechten Steckers und der dazwischen liegenden Koaxialleitung
kaskadiert, um die S-Parameter des ganzen Standards zu berechnen. Das
Modell des Offset Shorts ist ähnlich, allerdings wird hier der zweite Stecker
durch eine Kurzschlussebene ersetzt.

Solche Transmissions- und Reflexionsstandards werden für die Kalibra-
tion eines NWAs benutzt. Das Ziel der Kalibration ist, die Koeffizienten
der Wellenhauptausbreitungspfade im NWA zu bestimmen. Dazu wer-
den häufig mehr Standards als nötig gemessen, was unweigerlich zu In-
konsistenzen zwischen Standards, NWA Modell und gemessenen rohen
S-Parametern führt. Diese Inkonsistenzen werden meist durch Fehler in
der Beschreibung der Standards erklärt, aber der hier beschriebene Kali-
brationsalgorithmus basiert auf einem allgemeineren Fehlermodell. Durch
Temperaturdrift und Kabelbewegungen verändern sich die als konstant
angenommenen Koeffizienten der Ausbreitungspfade im NWA, was ein um
Fehler im NWA Modell erweitertes Fehlermodell motiviert. Dieses erwei-
terte Fehlermodell wird mit dem Bayesschen Gesetz in eine Kalibrations-
gleichung umgewandelt. Der auf dieser Gleichung basierende Algorithmus
verwendet nichtlineare Optimierung und Monte Carlo Integration, um
die Kalibrationskoeffizienten zu berechnen. In einem Vergleich mit ande-
ren Kalibrationsalgorithmen hat sich gezeigt, daß der neue Algorithmus
stabiler und präziser als die getesteten Algorithmen ist.

Die bisher beschriebene Strategie, bestehend aus genauer Modellie-
rung der Standards und Minimierung des Fehlereinflusses durch stati-
stische Modellierung, ist von begrenztem Nutzen für Messobjekte mit
Schnappverschlussteckern. Die Längenvarianz solcher Steckverbindungen
ist so groß, daß eine Kalibration mit Schnappverschlussstandards nicht
die geforderte Genauigkeit liefern kann. Allerdings hat eine Monte Carlo
Simulation des Kalibrationsprozesses gezeigt, daß eine viel höhere Mes-
spräzision durch eine vorhergehende Kalibration mit Präzisionssteckern
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und nachfolgendem Anbringen von Adaptern erzielt werden kann. Die da-
bei erforderlichen Adapter müssen möglichst genau charakterisiert sein,
was mit zwei hier untersuchten Methoden erreicht werden kann. Die er-
ste Methode benötigt die Schnappverschlusstandards Short, Open und
Thru zur Charakterisierung der Adapter, während die zweite Methode
mit stützscheibenlosen Adaptern arbeitet. Experimente haben gezeigt,
daß die Methode mit den stützscheibenlosen Adaptern genauer ist als
die erste Methode.
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1 Introduction

1.1 Background

A measurement process can be seen as a practical realization of a physical
theory. For coaxial S-parameter measurements the theory is well known.
The ratio of reflected or transmitted waves to incoming waves defines
the reflection and transmission coefficients respectively. The theoretical
concept of S-parameter measurements is embodied in coaxial standards. It
is not trivial to define coaxial standards, because the relationship between
geometry, material parameters and the resulting S-parameters has to be
established for this purpose. A further difficulty is that it is not possible
to measure how accurate such definitions are because the measurement
itself depends on the standard which should be measured. Thus, it is
only possible to detect errors in the definition of standards by comparing
different standards. Coaxial standards which are computed from geometry
and conductivity are seldom available for frequencies up to 70 GHz. Most
available standards for this frequency range are simply declared to have
ideal values, e.g. loads have zero reflection.

1.2 Motivation

The ability to execute accurate coaxial S-parameter measurements is a
key competence for the development of new microwave products. Accu-
rate and precise microwave measurements provide the feedback link be-
tween prototyping and design. Such S-parameter measurements are done
routinely up to frequencies of 50 GHz in 2.4 mm systems. Applications
like automotive radar and advanced cordless telecommunication systems,
which make use of oxygen attenuation, operate at higher frequencies. The
reduced wavelength requires smaller connectors. Small snap-on connec-
tors or 1.85 mm connectors can handle frequencies up to 70 GHz. Snap-on
connectors are designed to be connected in a fast and easy way, whereas
1.85 mm connectors are intended for applications where accuracy and pre-
cision are very important.

1



2 1 INTRODUCTION

Coaxial S-parameter measurements of a device under test (DUT) with
snap-on connectors or 1.85 mm connectors are done with a VNA, which
is calibrated with standards for the respective connector type. Several
standards, DUTs with known S-parameters, are measured for calibration.
The differences between known S-parameters of the standards and raw S-
parameters displayed on the not yet calibrated VNA determine the error
terms in a model of the VNA. This model accounts for the most important
systematic imperfections of the VNA. Thus the goal of calibration is to
find a model which describes the relationship between S-parameters of the
DUT and raw S-parameters as accurately and precisely as possible.

In a next step, the model of the VNA is reversed to deduce the S-
parameters of a DUT from the raw S-parameters of the VNA. Obviously
the accuracy of the final measurement result depends solely on this cor-
rection process. The correction process itself is prescribed by the model
which represents the VNA. The coefficients of this model are in turn de-
termined by the used standards.

Thus higher measurement accuracy and a quantification of measure-
ment uncertainty can be achieved by more accurate models of standards
and a more accurate model of the VNA. While the production process of
standards results in given mechanical tolerances, usually the dimensions
of a standard can be measured with significantly lower uncertainty. It is
possible to accurately compute the S-parameters of the standard by using
such dimensional measurements as input to modern field solvers. Espe-
cially the connector and the surface roughness of the standard have a
strong impact on the outcome of the calculation. Nonetheless, many not
controllable parameters like cable movement or limited accuracy of the
standards degrade the accuracy of the calibration. State of the art statis-
tical methods can be used to minimize the impact of such error sources.
In this thesis, both tools field solvers and statistical methods are used
to improve the accuracy of VNA measurements and to provide starting
points for the calculation of the expected error margins.

1.3 Objective

The objective of this thesis is to illustrate the computational process
from material parameters and dimensions of standards via the statisti-
cal properties of the VNA to traceable S-parameters in coaxial devices up
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to 70 GHz. New techniques of electromagnetic simulation and statistical
modeling are required to achieve high measurement accuracy at such high
frequencies.

While the influence of the connector was simply neglected in former
times, this is no longer advisable for the frequencies under consideration.
The small snap-on connectors and 1.85 mm connectors for frequencies up
to 70 GHz can only be produced with slotted female contacts, whereas
larger connectors for lower frequencies are available as slotless designs.
The slotted connectors have noticeable influence on the S-parameters.
Thus an accurate model which relates the geometry of a slotted connector
to its S-parameters is needed.

Nearly all coaxial standards contain a section of coaxial transmission
line after the connector. For lower frequencies one usually assumed the
surface of this transmission line to be smooth. Now the frequency is
increased but the mechanical production process of standards and thus the
surface roughness stay the same. This results in a situation where one can
observe noticeable effects of surface roughness on the propagation constant
for frequencies above 50 GHz. A method to compute the propagation
constant of a transmission line with rough surfaces is needed to calculate
the S-parameters of standards containing transmission line sections.

Another effect of the increase in frequency are shorter wavelengths.
Thus even very small mechanical instabilities of the VNA and the mea-
surement cables or dimensional inaccuracies of the standards have a no-
ticeable impact on the measurement results. A calibration algorithm
which allows to minimize the influence of such statistical errors is needed
to make measurements more precise.

The shorter wavelengths are as well a reason for the instable
S-parameters of snap-on connectors. This strong variance poses a problem
for VNA calibration because multiple connections are required to calibrate
a VNA. Conventional calibration methods are useless in this context be-
cause the connector variability makes the calibration result highly random.
A calibration method which minimizes the influence of these instabilities
is required to measure S-parameters of DUTs with snap-on connectors
accurately.
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1.4 Outline

This thesis is subdivided into four technical chapters.
The first technical chapter is about S-parameters and how they are

linked to the electromagnetic modes in coaxial transmission lines. The
introduction of this chapter sketches all terms and concepts which are
needed to define S-parameters. The most basic concept covered are modes
in transmission lines. Consequently the well known formulas for modes
in coaxial air lines with smooth surfaces are discussed. The following
section describes a novel method of computing the influence of surface
roughness and plating on the electromagnetic fields. Finally, the terms
propagation constant, characteristic impedance, port and S-parameters
are defined. The limits of these definitions with respect to rough air lines
are emphasized.

The introduction of the second chapter gives a short overview over the
most popular calibration standards. The influence of the connector on
the S-parameters of the standard has been neglected in the past. For
this reason, two new methods to compute the S-parameters of the slotted
1.85 mm connector are described. The thorough validation of the methods
is followed by the presentation of a tool which computes the S-parameters
of a connector within seconds. In the last section of this chapter, it is
shown how to compute the S-parameters of offset shorts and transmission
line standards. The model of the connector is used for this purpose but
new techniques to compute the S-parameters of plain coaxial lines and
short planes are illustrated as well.

A new calibration algorithm is described in the third chapter. It takes
the errors of standard definitions and the errors of the VNA model into
account. Among many factors, temperature drift and bending the cables
are the most prominent reasons for discrepancies between the model of
the VNA and reality. Using Bayes’ law, the error model of calibration
is converted to a calibration algorithm. The numerical implementation
requires constrained nonlinear optimization and Monte Carlo Integration.
These constraints are imposed by the passivity of the standards. They
increase the accuracy and stability of the calibration algorithm. A far
more important reason for the superior stability and accuracy of the new
algorithm is the error model which captures the most important error
sources.

Finally the fourth chapter contains solutions to the calibration problem
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with snap-on connectors. Owing to their low repeatability, snap-on con-
nectors require a non standard calibration procedure. Comparing tradi-
tional calibration methods and adapter de-embedding by a Monte Carlo
simulation (MCS) showed the superiority of adapter de-embedding. A
crucial step in the adapter de-embedding method is the characterization
of the adapters. Two new methods for adapter characterization are imple-
mented. First, a method which uses only short, open and thru and which
relies additionally on the reciprocity of the adapters was implemented and
tested. Secondly, a method utilizing beadless adapters which can be char-
acterized numerically was tested. The beadless adapter method proofed
to be more accurate than the short open thru method.
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2 Coaxial Modes, Characteristic Impedance and

S-parameters

Abstract— In the first sections of this chapter, the modes of coaxial transmission

lines with smooth surfaces are described and computed. Then a novel method for

the computation of modes in rough plated coaxial lines is presented. After this a

short introduction to transmission line theory is given. The therewith associated

characteristic impedances are derived from the previously computed modes. The

concept of S-parameters and ports is explained in the last part.

2.1 Introduction

A VNA measures the reflectivity and transmissivity of a DUT. The con-
cepts of reflection and transmission measurement require two waves1 re-
spectively. One which travels towards the DUT and one which is reflected
or transmitted. These waves are measured on planes (ports) which are
perpendicular to the direction of propagation. The outcome of the VNA
measurement are reflection coefficients and transmission coefficients, i.e.,
ratios of received and transmitted wave amplitudes.

The same physical facts are described by transmission line theory. It
models the mechanisms of propagation on homogenous line sections with
propagation constants and wave amplitudes. A common simplification is
the assumption of a single mode on each line section. This assumption is
based on the fact that only the so called fundamental mode propagates
with low attenuation. Reflection and transmission at the endpoints of line
sections are modeled with characteristic impedances. Hereby network the-
ory is used to compute reflection and transmission. These simplifications
are in general inexact but provide in many cases useful values.

1The term wave represents a certain pattern of electromagnetic fields (mode) which
propagates in a coaxial transmission line with given speed and losses (propagation
constant) in a given direction. The strength of the wave is described by its complex
amplitude.

7
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z2z1 z3Source

Reference
Transmission Line 1

Reference
Transmission Line 2

Port Plane 1 Port Plane 2

Port Section 1 Port Section 2

DUT

Figure 2.1: The ports are cross-sections of the reference transmission lines. The
reference transmission line determines the mode which is measured at a port.

An even more abstract description of reflection and transmission is
given by S-parameters. They are reflection and transmission coefficients
which are measured with a virtual measurement system. The reference
impedance characterizes the virtual measurement system. Transmission
line theory allows one to convert S-parameters from one reference im-
pedance to another.

Traceable S-parameters are S-parameters which are linked to the SI
units with a given uncertainty. To establish this link, it is necessary to
state the material properties and dimensions of the coaxial waveguide in
SI units with associated uncertainties. Once this is done, traceable modes,
characteristic impedances and finally S-parameters can be computed. Ob-
viously the first step for the measurement of traceable S-parameters is to
properly define what a mode is.

2.2 Modes

There are several definitions of modes in literature, [1], [2], [3]. Here a
mode is defined as an eigen solution of Maxwell’s equations in a wave-
guide which can not be decomposed into other independent eigen solu-
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tions. Note that modes propagating on the outside of transmission lines
are not treated here. A mode consists of field pattern and propagation
constant, whereas for a wave additionally the wave amplitude and prop-
agation direction are given. If every Maxwellian field in a transmission
line can be written as a superposition of modes, these modes are called a
complete basis. The mode properties depend on the type of transmission
line.

Lossless smooth transmission lines consist of perfect conductors and loss-
less dielectrics. They are perfectly straight in z-direction and sup-
port modes which span a complete basis of the solution space, [1].
The same holds for transmission lines with perfect conductors but
lossy dielectrics. In practical cases coaxial transmission lines are
usually used in a frequency range (monomode regime) where only
one mode (the fundamental mode) propagates inside the transmis-
sion line.

Lossy smooth transmission lines consist of lossy conductors and lossy or
lossless dielectrics. It is at least challenging if not impossible to show
in a mathematically rigorous way that modes of the type

~F (x, y, z) = ~F (x, y)e−γz (2.1)

span a complete basis of the solution space. Here ~F (x, y, z) are the

electromagnetic fields in the transmission line and ~F (x, y) is the form
function of the mode. The propagation constant γ defines attenua-
tion and phase velocity of the mode. In the monomode regime, the
fundamental mode has far lower attenuation than higher modes.

Lossy periodic transmission lines are axisymmetric structures with a pe-
riodic pattern in z-direction. They consist of lossy conductors and
lossy or lossless dielectrics. Depending on the type of roughness, one
can approximate rough transmission lines by periodic transmission
lines. With Floquet’s theory one can show that periodic transmis-
sion lines support modes according to the here used definition of
modes. A periodic line supports modes of the type

~F (x, y, z) =

∞
∑

n=−∞

~Fn(x, y)e−(γ+j2πn/p)z . (2.2)
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Here p is the length of the roughness pattern. Again the proof
that these modes span a complete basis of the solution space is
not known. However, all practical experiences show that rough
lines with reasonably small roughness, i.e., the deviations from the
smooth structure are small compared to the cross sectional dimen-
sions, behave like a smooth transmission line with a single funda-
mental mode.

A practical definition of what the VNA measures is chosen due to the
mathematical problems in showing the completeness of the solutions for
lossy lines. A VNA measures the mode which has the lowest attenuation in
the reference transmission line, see Fig. 2.1. In the case of a smooth line,
this means the field pattern of the measured mode is the one towards which
the electromagnetic field in the port plane converges if the distances z1,z2

and z3 are increased equally. In the case of rough lines, the field pattern
of the measured mode is the one towards which the electromagnetic field
in the port section converges if the distances z1,z2 and z3 are increased
by similar numbers of roughness patterns. A port plane is a plane which
is perpendicular to the z-direction of the smooth waveguide. The port
section is essentially one roughness pattern.

The assumption that a VNA measures the mode with the lowest at-
tenuation in the reference transmission line and that there is only one
such mode is supported by the following observations. Different VNAs
yield very similar measurement results if they are used with identical test
ports and calibration kits. In other words, different excitations of a ref-
erence line lead to one single field pattern. It is found by measurements
that the attenuation characteristics of the modes which occur in coaxial
transmission lines are of the type e−γz. Modes with these attenuation
characteristics will be computed in the following.

2.3 Coaxial lines with perfect conductors

The coaxial line with perfect conductors and a possibly lossy dielectric
is used as a theoretical model. The cross section which is enclosed by
the outer conductor supports an infinite number of modes which form a
complete set. At very low frequencies only one mode (the fundamental
TEM-mode) can propagate. The higher modes are capable to propagate
only above a mode specific cut-off frequency. A short overview on these
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e,m

a
b

Figure 2.2: Cross section of an ideal coaxial line with dielectric. The gray areas
designate perfect electric conductors (PECs) and the white area the dielectric.

higher modes is given here in order to set the cornerstones for monomode
operation.

The geometry of a coaxial transmission line with perfect conductors
and a dielectric specified by ǫ, µ is depicted in Fig. 2.2. The permeability
µ is a real variable, whereas the permittivity

ǫ = ǫ +
σ

jω
(2.3)

is complex and linked to the real valued permittivity ǫ, the conductivity
σ, the angular frequency ω and j the imaginary unit, assuming ejωt time
dependence for all fields, voltages and currents.

As described in [4], an infinite number of modes with different cutoff
frequencies exists in such a coaxial transmission line. The electromagnetic
fields of the transversal electro magnetic (TEM) mode are depicted in
Figs. 2.3a and 2.3b. The first higher non rotational symmetric mode is
the transversal electric (TE)11-mode which is depicted in Figs. 2.4a and
2.4b. It can be excited by non rotational symmetric discontinuities in the
coaxial transmission line. The first higher rotational symmetric mode is
the transversal magnetic (TM)01-mode. It is depicted in Figs. 2.5a and
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2.5b and it can be excited by rotational symmetric discontinuities in the
coaxial line.

Figure 2.3a: Electric field of TEM-
mode. The intensity | ~E| is in-
dicated by colors. Brighter col-
ors correspond to higher field
strength. The direction ~E/| ~E| is
indicated by arrows.

Figure 2.3b: Magnetic field of
TEM-mode. The intensity | ~H|
is indicated by colors. Brighter
colors correspond to higher field
strength. The direction ~H/| ~H | is
indicated by arrows.

Usually coaxial transmission lines are used below the cutoff frequency
of the first higher mode. The propagation constant of the TEM-mode

γ = jω
√

µǫ (2.4)

describes with which phase and attenuation constant the electromagnetic
fields propagate. Table 2.1 gives the cutoff frequencies and the attenuation
at f = 70 GHz of some modes in a 50 Ω, 1.85 mm coaxial system with air
as dielectric. In the following, only modes which are very similar to the
TEM mode are treated.

2.4 Coaxial lines with lossy conductors

The TEM mode does not exist in a coaxial line with lossy conductors.
Instead of the TEM mode there is the quasi transversal electromagnetic
(QTEM) mode. Its field distribution in the dielectric is very similar to
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Figure 2.4a: Electric field of TE11-
mode. The field is represented in
the same way as in Fig. 2.3a.

Figure 2.4b: Magnetic field of
TE11-mode. The field is repre-
sented in the same way as in Fig.
2.3b.

Figure 2.5a: Electric field of TM01-
mode. The field is represented in
the same way as in Fig. 2.3a.
Note that the dominant part of
the electric field points in longi-
tudinal direction.

Figure 2.5b: Magnetic field of
TM01-mode. The field is repre-
sented in the same way as in Fig.
2.3b.
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Table 2.1: Modes in 1.85 mm coaxial transmission line with perfect conductors.

mode TEM TE11 TM01

cutoff frequency 0 73.4 GHz 284.08 GHz

attenuation at f = 70 GHz 0 9.27 dB/mm 115.4 dB/mm

e2 2,m

e3 3,m

e1 1,m

a
b

l=1l=2l=3

Figure 2.6: Cross section of lossy coaxial line with dielectric. The gray areas
designate the conductors and the white area the dielectric.

the TEM mode. The electromagnetic fields of the fundamental mode, the
QTEM mode, are described in [4], [5], [6] and [7]. In fact, the solution of
the differential equation which describes the QTEM mode is not trivial
and requires a special algorithm. The algorithm presented in the following
is similar to the one described in [6].

As in [6] it is assumed that the thickness of the outer conductor exceeds
the penetration depth of electromagnetic fields by far. This assumption is
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valid down to frequencies of f = 1 MHz where the skin depth δ = 159 µm
of a base material with conductivity2 σ = 107 S/m is small compared to
the thickness of the outer conductor. Consequently, for higher frequencies
it can be assumed with good accuracy that the outer conductor extends
to an infinite radius. This is indicated by the dashed line which delimits
the outer conductor in Fig. 2.6.

Maxwell’s equations in frequency domain are used to compute the fun-
damental mode

rot ~H = jωǫ ~E (2.5)

rot~E = −jωµ ~H. (2.6)

Here ~E and ~H denote the complex electric and magnetic field. In a cylin-
drical coordinate system, the fundamental mode has only three non-zero
field components: the longitudinal electric field Ez , the transversal elec-
tric field Er and the transversal magnetic field Hφ. Rewriting Maxwell’s
equations (2.5) and (2.6) for the three non-zero field quantities yields

− ∂

∂z
Hφ = jωǫEr (2.7)

∂

∂z
Er −

∂

∂r
Ez = jωµHφ (2.8)

∂

∂r
Hφ +

Hφ

r
= jωǫEz . (2.9)

Restricting (2.7)-(2.9) to the l-th region, see Fig. 2.6, and decoupling
of the equations yields Bessel’s differential equation for the transversal
magnetic field

r2
∂2H

(l)
φ

∂2r
+ r

∂H
(l)
φ

∂r
+ (h(l)2r2 − 1)H

(l)
φ = 0. (2.10)

The parameter h(l)2 is defined as

h(l)2 = γ2 − ω2µ(l)ǫ(l). (2.11)

2Copper has a conductivity of σ ≈ 5×107 S/m. Usually parts are made from beryllium
copper, which has lower conductivity. Conductivity is difficult to predict because
stresses introduced by machining change the conductivity.
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A solution of the above given Bessel’s differential equation can be ex-
pressed by the following linear combination of Hankel functions of first
and second kind

Z
(l)
k (h(l)r) = A(l)H

(1)
k (h(l)r) + H

(2)
k (h(l)r). (2.12)

Where A(l) is a complex constant which has to be determined by the
boundary conditions. The index k depends on the differential equation
which has to be solved. In the case of (2.10) this would be k = 1 because

of . . . + (h(l)2r2 − 1)H
(l)
φ = 0.

Using (2.7), (2.8), (2.9) and (2.12), the electromagnetic fields in the l-th
region can be written as

H
(l)
φ (r) = B(l)Z

(l)
1 (h(l)r) (2.13)

E(l)
r (r) =

B(l)γ

jωǫ(l)
Z

(l)
1 (h(l)r) (2.14)

E(l)
z (r) =

B(l)h(l)

jωǫ(l)
Z

(l)
0 (h(l)r). (2.15)

B(l) is a complex constant which has to be determined like A(l) by the
boundary conditions. Note that k = 1 for the transversal components
and k = 0 for the longitudinal component. The arguments of the Hankel
functions become rather large for the resulting h(l). For the evaluation
of the Hankel functions, one can use the formulas (B.1) and (B.2) in
appendix B.

In each of the three layers in Fig. 2.6, the field is described by (2.13),
(2.14) and (2.15). The constants A(l), B(l) and the eigenvalue γ are still
unknown. To solve the eigenvalue problem, the following well known
approach is made:

a) Layer one has the solution Z
(1)
k (h(1)r) = Jk(h(1)r) because the Neu-

man function diverges for a zero argument. This requires A(1) = 1.

b) The outermost layer has the solution Z
(3)
k (h(3)r) = H

(2)
k (h(3)r) be-

cause the second Hankel function does not diverge for infinite argu-
ments in the upper right complex plane. This requires A(3) = 0

c) The layer in-between has the already mentioned general solution
(2.12).
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Using the boundary conditions for the continuity of Ez and Hφ on
the boundary between center conductor and dielectric, one obtains after
canceling of the amplitudes B(1) and B(2)

Z
(1)
1 (h(1)a)

Z
(1)
0 (h(1)a)

=
Z

(2)
1 (h(2)a)

Z
(2)
0 (h(2)a)

h(1)ǫ(2)

h(2)ǫ(1)
. (2.16)

The second boundary gives the second equation

Z
(2)
1 (h(2)b)

Z
(2)
0 (h(2)b)

=
Z

(3)
1 (h(3)b)

Z
(3)
0 (h(3)b)

h(2)ǫ(3)

h(3)ǫ(2)
. (2.17)

Utilizing (2.16) and (2.17), the eigenvalue problem can be solved in an
iterative algorithm:

a) Start with an estimated value for γ. This estimate can come from
approaches like [4] or [5].

b) Starting with (2.16) for the innermost layer A(2)i can be computed.

c) A(2)o can be computed using (2.17) for the outermost layer.

d) This gives rise to an error term E = A(2)i − A(2)o

e) The derivative ∆ = ∂E
∂γ can be approximated numerically.

f) A better γ can be guessed by γnew = γold − E
∆ .

The presented algorithm can compute the propagation constant up to 70
decimal digits. The numerical implementation of this algorithm is straight
forward except for the involved Hankel functions. The evaluation of Han-
kel functions for large arguments requires the approximations described
in Appendix B.

2.5 Coaxial lines with rough lossy conductors

Lossy smooth transmission lines (see previous section) are an idealization
of practical transmission lines which are lossy and have rough surfaces.
The manufacturing steps of a transmission line cause the roughness. In
the production process of an air line, the most relevant machining steps
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z
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Figure 2.7: Rough conductor surfaces of a coaxial line with cylindrical coordi-
nate system

involve rotating tools or rotating work pieces in conjunction with an au-
tomatic feed. The result is a helix pattern on the surfaces of the air line.
This pattern can be approximated as a periodic ring pattern because the
pitch of the helix is approximately 1 µm and the diameters are larger than
800 µm. The approximation as a periodic ring pattern simplifies the prob-
lem considerably because now Floquet’s theorem and the axial symmetry
can be exploited.

The fundamental mode of a lossy coaxial line with periodic rough sur-
faces is characterized by an eigenvalue which has similar properties as the
propagation constant. One can compute this eigenvalue with a perturba-
tion calculation based on the solution for a smooth problem. In [8] such
a perturbation calculation is described:

a) For center and outer conductor, the perturbation terms should be
derived respectively from a cylinder or bore with rough surfaces.
Nonetheless, Sanderson [8] uses a flat periodic roughness profile
which is illuminated by a plane wave which causes a scattered field
limited to the close vicinity of the surface. This approach gives inac-
curate but acceptable perturbation results under the condition that
the skin depth is much smaller than the cross sectional dimensions
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e1 1,m

e2 2,m

e3 3,m e1 1,m e3 3,me3 3,m

a1a3

a4 a2

b1b3

b4 b2

Figure 2.8: A longitudinal section of the coaxial transmission line. The different
materials are characterized by complex permittivity ǫl, and permeability µl.
Dark gray, light gray and transparent indicate base metal (l = 3), plating
(l = 2) and dielectric (l = 1) respectively. For the sake of visibility, the
relation between roughness and diameters is exaggerated. Maximum and
minimum radii of the center conductor are designated by ai, whereas the bi

are used for the respective radii of the outer conductor.

of the transmission line.

b) The flat field problem is solved by using an infinite sum of Rayleigh
waves. The condition 2πh/p ≤ 0.448 ([9, 10]) for the applicability
of the Rayleigh hypothesis on sinusoidal roughness with amplitude
h and roughness period p is violated for some of the surfaces which
are depicted in [8]. A comparison of surface impedances predicted
by the method presented in [8] and computed with the multiple
multipole (MMP) method shows significant differences for roughness
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profiles with 2πh/p > 0.448.

c) Use the mean value of the electric field above the rough surface to
obtain a virtual surface displacement de such that it describes the
influence of the roughness on a fictitious plate capacitor.

d) Use the mean surface impedance on the rough surface to obtain a
complex surface displacement di which describes the influence of the
roughness on a fictional parallel plate inductor.

e) Compute the propagation constant from the transmission line pa-
rameters which are perturbed by de and di. However, it has to be
mentioned that this is a non physical way of computing the propa-
gation constant as the transmission line parameters are not uniquely
defined for lossy lines, see [11].

In the following, a new and more accurate method for the computation
of the eigenvalue of a rough lossy coaxial transmission line is presented.
First, the coaxial line including roughness and plating is described as a
whole. A theoretical discussion using Floquet’s theory shows that rough-
ness has only local influence on the electromagnetic fields. This shows that
the inner and outer surface of a coaxial line can be treated separately from
each other. The second subsection is dedicated to the computation of the
electromagnetic fields of a separate rough plated surface which is illumi-
nated by a plane wave. Utilizing the MMP method in combination with
the Rayleigh method cancels the original restriction 2πh/p ≤ 0.448 of the
Rayleigh hypothesis for such problems. Equivalent material parameters
are extracted from the results of the auxiliary planar problem. These pa-
rameters describe the conductors in a coaxial line problem with smooth
surfaces, which is finally solved in a way similar to Daywitt’s approach
[6]. Moreover, the angle of incidence used in the planar auxiliary prob-
lem is coupled to the result of the equivalent coaxial problem. In the
last subsection, the bounds of accuracy are discussed and the solution
is compared against Daywitt’s formula, Sanderson’s formula and against
measurements of the propagation constant made with Multical, see [12]
and [13].
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2.5.1 The electromagnetic field problem

The electromagnetic field problem of a coaxial transmission line is defined
by the production process of its center conductor and outer conductor.
The center conductor is usually produced by lathing or centerless grinding,
whereas the outer conductor requires drilling and honing. The required
machining steps involve either rotating tools or a rotating work piece in
conjunction with an automatic feed. This is the reason why the resulting
surfaces have a helix like pattern. Due to the small helix pitch (approx.
1 µm) and the large helix diameter (larger than 800 µm) one can approx-
imate the helix as a sequence of grooves in φ-direction, see Fig. 2.7 and
2.8. The depth of the grooves is approx. 1 µm. To prevent corrosion, the
surfaces of center and outer conductor are plated with a layer of precious
metal. During the plating process the grooves are enlarged or smoothed
in dependence of the plating process and the plating material. A typi-
cal hard gold plating is approximately 1 µm thick and barely deepens or
flattens the grooves of the base metal, see Fig. 2.8.

The following assumptions are made to compute the eigenvalue γ of the
fundamental mode in a transmission line with grooves:

a) The grooves are assumed to be in φ-direction, i.e., axisymmetric,
and strictly periodic, see Fig. 2.8 and 2.9. Grooves which have
other directions are neglected because in most coaxial transmission
lines the amount of grooves in other directions is small. The use of
a strictly periodic roughness profile is close to reality.

b) The used metals and the air enclosed in the transmission line are
assumed to be linear. This is a valid assumption for typical field
strengths in S-parameter measurements.

c) In the following, it is assumed that the thickness of the outer con-
ductor exceeds the penetration depth of electromagnetic fields by
far. This assumption is valid down to frequencies of 1 MHz where
the skin depth δ = 159 µm of a base material with conductivity
σ3 = 107 S/m is small compared to the thickness of the outer con-
ductor. Consequently it can be assumed with good accuracy for
higher frequencies that the outer conductor extends to infinity.

The QTEM mode of a smooth coaxial line is similar to the fundamental
mode of a axisymmetric, periodic, coaxial transmission line. The latter



22
2 COAXIAL MODES, CHARACTERISTIC IMPEDANCE AND

S-PARAMETERS
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Figure 2.9: The period of the axisymmetric eigenvalue problem is p.The bound-
aries ∂a and ∂b are subject to Floquet’s boundary conditions ~Fb = ~Fae−γp

where ~Fa is the field on ∂a and ~Fb is the field on ∂b. The eigenvalue of the
fundamental mode is γ.

has three non-zero field components: the longitudinal electric field Ez,
the transversal electric field Er and the transversal magnetic field Hφ.
Like for the smooth lossy coaxial line, the field components are coupled
by (2.7-2.9). The components are merged to simplify notation

~F (r, φ, z) =

















Ez(r, φ, z)

Er(r, φ, z)

Hφ(r, φ, z)

















. (2.18)

The eigenvalue problem which has to be solved for the fundamental
mode is depicted in Fig. 2.9. Its boundary conditions at r = 0 and
r → ∞ are given by the axisymmetric nature of the problem. The bound-
ary conditions between the different materials are given by the continu-
ity conditions for electric and magnetic fields. Floquet’s theorem, [14],
guarantees that a nonzero solution which fulfills the periodic boundary
conditions

~Fb = ~Fae−γp (2.19)

at ∂a and ∂b exists. ~Fa,b denotes the electromagnetic field on the bound-
aries and p is the period. Furthermore, Floquet’s theory allows one to
write the electromagnetic field of the fundamental mode as

~F (r, φ, z) =

∞
∑

n=−∞

~Fn(r, φ)e−(γ+j2πn/p)z . (2.20)
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The structure functions ~Fn(r, φ) consist of structure functions for electric
and magnetic fields

~Fn(r, φ) =

















Ezn(r, φ)

Ern(r, φ)

Hφn(r, φ)

















. (2.21)

Next it is shown that each Floquet term fulfills Maxwell’s equations
in regions which are homogenous in z-direction. For this purpose the
differential equations (2.7), (2.8) and (2.9) are multiplied by e(γ+j2πm/p)z

and integrated over one period in z-direction

z+p
∫

z

1

r

∂

∂r
rHφe(γ+j2πm/p)zdz =

z+p
∫

z

(σ + jωǫ)Eze
(γ+j2πm/p)zdz (2.22)

−
z+p
∫

z

∂

∂z
Hφe(γ+j2πm/p)zdz=

z+p
∫

z

(σ + jωǫ)Ere
(γ+j2πm/p)zdz (2.23)

z+p
∫

z

∂

∂z
Ere

(γ+j2πm/p)zdz −
z+p
∫

z

∂

∂r
Eze

(γ+j2πm/p)zdz

=

z+p
∫

z

jωµHφe(γ+j2πm/p)zdz. (2.24)

Depending on the radii an and bn, the coaxial line can be subdivided
in L regions where the material does not change in z-direction. These
regions are delimited by the r-coordinate, e.g. a3 < r < b3. Using the
orthogonality properties of the exponential function, one obtains from
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(2.22), (2.23) and (2.24)

(σ(l) + jωǫ(l))E(l)
zm(r, φ) =

1

r

∂

∂r
rH

(l)
φm(r, φ) (2.25)

(σ(l) + jωǫ(l))E(l)
rm(r, φ) = (γ + j2πm/p)H

(l)
φm(r, φ) (2.26)

jωµ(l)H
(l)
φm(r, φ) = −(γ + j2πm/p)E(l)

rm(r, φ)

− ∂

∂r
E(l)

zm(r, φ). (2.27)

This means that Maxwell’s equations hold for each Floquet component
~F

(l)
m e−(γ+j2πm/p)z in the l-th region.
This is the reason why the Bessel differential equation is useful to de-

scribe the electromagnetic fields of a single Floquet term. Note that this
differential equation is already known from the smooth problem. In other
words, equations (2.10)-(2.15) describe the electromagnetic fields of a sin-
gle Floquet term in a homogenous subdomain. The only difference with
respect to the mentioned smooth problem concerns the transversal wave

number h
(l)
m which is defined in (2.11) for the smooth problem. For the

rough problem, it is defined as

h(l)2
m =

(

γ +
j2πm

p

)2

+ jωµ(l)(jωǫ(l) + σ(l)) (2.28)

for the l-th homogeneous subdomain and the m-th Floquet term. Ap-
proximate numerical values of hm for air as dielectric and p = 1 µm are
given in Table 2.2.

Due to the small value of p, the values in Table 2.2 become large. Now
it is obvious that fields of the first order Floquet components decay to
1/e in a depth of less than δ < 1 µm for f = 1 GHz and δ < 100 nm for
f = 70 GHz. In other words, the field of the higher Floquet modes is
concentrated around the boundaries of each region l. This shows that the
field coupling between inner conductor and outer conductor happens only
with the zero order Floquet term. A consequence of this finding is that
it is sufficient to characterize the effects of roughness without considering
the interaction between inner and outer conductor. The interaction is
governed by the zero order Floquet term and can be treated separately.
A closer look on the zero order Floquet term shows that it consists of two
Hankel functions. The Hankel function of the first kind is a cylindrical
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Table 2.2: Numerical Values of hm

Number m
of Floquet
component

Frequency f hm

0 1 GHz −8.8 × 102 + j4.2

1 1 GHz −3.9 × 1013 + j1.2 × 106

0 70 GHz −4.4 × 106 + j3.0 × 103

1 70 GHz −3.9 × 1013 + j1.2 × 107

wave which contracts towards the z-axis, whereas the Hankel function of
the second kind expands from the z-axis. Thus the zero order Floquet
term describes two cylindrical waves of opposite direction. The angles
of incidence of both cylindrical waves on the boundaries of region l are
identical.

The above motivates the separation of the complete field into a rapidly
varying field ~Ff which is expressed by

~Ff =

−1
∑

n=−∞

~Fn(r, φ)e−(γ+j2πn/p)z +

∞
∑

n=1

~Fn(r, φ)e−(γ+j2πn/p)z . (2.29)

The remaining fundamental Floquet component is the relatively slowly
varying field ~Fs which is similar to a mode in a smooth waveguide

~Fs = ~F0(r, φ)e−γz. (2.30)

2.5.2 The numerical solution

In the dielectric of the coaxial transmission line, the “slow” fields ~Fs dom-
inate, whereas the “fast” fields ~Ff are concentrated around the surfaces of
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the conductors. The “slow” field consists of two cylindrical waves which
illuminate the conductors of the transmission line under the same an-
gle of incidence. These findings lead to the following numerical solution
strategy:

a) The fields of a plane wave, illuminating a rough metallic surface un-
der five given angles, are computed. The resulting surface impedances
contain the effects of all higher Floquet components.

b) The surface impedances are transformed to five equivalent complex
permittivities of smooth materials. Using equivalent materials in-
stead of using the surface impedance corrects at least in first order
for using a planar problem instead of a cylindrical one, see section
2.5.3.

c) The QTEM modes of five coaxial transmission lines made of the
smooth materials are computed. These computations result in five
angles of incidence of the cylindrical waves and five propagation
constants.

d) Now one can interpolate between the five coaxial lines in such a way
that the angle of incidence of the original plane wave equals the angle
of incidence of the cylindrical wave. This quadratic interpolation
provides the correct propagation constant.

The quadratic interpolation is chosen because numerical experiments
showed approximately quadratic dependence on the typical angles of in-
cidence. Thus at least three different angles of incidence are required for
the interpolation. Using more different angles of incidence is a tradeoff be-
tween higher accuracy due to over-determination and longer computation
time.

Plane wave incident on a rough surface

The field problem of a plane wave hitting a rough metallic surface is
depicted in Fig. 2.10. The problem is solved with the MMP method, see
[15]. The advantage of this method in a 2D application is that it satisfies
the boundary conditions of electric and magnetic field equally well. Many
commercial solvers compute the scalar magnetic potential and derive the
electric field from the magnetic potential. Such a solution resolves the
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Figure 2.10: A plane wave hits a rough plated metallic surface. The vector ~k
denotes the direction of propagation, whereas ~E and ~H designate the electric
and magnetic field of the incident wave. Material 1 is the dielectric of the
transmission line, material 2 is the plating metal and material 3 is the base
metal. Typical values for the angle of incidence αin are between 85◦ and 90◦.

magnetic boundary conditions well but the electric boundary conditions
are resolved poorly. This disparity becomes crucial for problems where
the geometrical features are much smaller than the wavelength.

The basis functions used by the MMP method, e.g., Rayleigh expan-
sions and multipoles, are solutions of Maxwell’s equations. The Rayleigh
expansions are a sum of plane waves with different propagation directions,
whereas multipole expansions are sums of Hankel functions of different or-
der. In a first step, the locations of the multipoles and Rayleigh expansions
are fixed. Next, matching points are distributed on the boundaries. The
boundary conditions in each matching point give, depending on the type
of boundary, several equations, which contain the amplitudes of multipoles
and Rayleigh expansions. Writing the equations for all matching points
results in an over-determined matrix because the MMP method uses more
matching points than required. The over-determined system is solved in
a way that the weighted square error is minimized. The weighting al-
lows one to control the importance of boundary conditions for a specific
matching point and field component. This control over the enforcement
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Figure 2.11: Magnetic field strength in a logarithmic color scale. The setup is
the same as given in Fig. 2.10 with an angle of incidence of αin = 89.75◦.
As in Fig. 2.10 the plane wave is incident from the right. The frequency is
70 GHz. The shape of the roughness mimics experimentally observed rough-
ness profiles.
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Figure 2.12: Differences of surface impedance measured 1.3 µm above the center
of the roughness profile as a function of frequency and angle of incidence.

of boundary conditions is important to solve the given problem. As a last
step, the system of equations has to be solved.

Figure 2.11 shows the computed magnetic field of a plane wave hitting
a rough metallic surface. Such computations yield a relative error of the
electromagnetic fields in the matching points below 0.13 percent for all
frequencies and angles of incidence. The assumption that the “fast” field
decays very rapidly towards the dielectric can be verified by reading the
coefficients of the according Rayleigh expansions. It was observed that the
amplitudes of the first and second order in the Rayleigh expansion differ
by at least four orders of magnitude from each other. This is true for all
used frequencies and angles of incidence at d = 1.3 µm above the center
of the roughness profile, (a4 + a3)/2 and (b4 + b3)/2. At this location the
surface impedance is measured. It depends on the angle of incidence, see
Fig. 2.12.
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Figure 2.13: A plane wave in a known dielectric medium is reflected on an
unknown second nonmagnetic conductive medium. In the point (0, d, 0), sit-
uated in a distance d above the center of the roughness profile, the surface
impedance is known. The second material has the permeability of vacuum
but its complex permittivity is derived from the known surface impedance
Zs.

Extraction of the artificial material parameters

The next step in the computation of the eigenvalue of the fundamental
mode is to convert the surface impedance Zs, produced by a plane wave
hitting a rough surface, to equivalent material parameters. The equivalent
smooth material is designed in such a way that it replaces the original
rough metallic surface without changing the surface impedance. Figure
2.13 illustrates the problem of finding the equivalent material parameters.

The permeability of vacuum is assumed for the artificial medium but
its complex permittivity is determined by Zs. The electric and magnetic
field of the incident wave are

~Ei = Ei(cosαp~ex − sinαp~ey)e
jk1(cos αpy+sin αpx) (2.31)

~Hi =
Ei

Z1
~eze

jk1(cos αpy+sin αpx). (2.32)

Here αp is the angle of incidence, the wave number is k1 =
√

ω2µ0ǫ1 and
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the characteristic impedance is Z1 =
√

µ0

ǫ1
. The reflected wave is

~Er = Er(cosαp~ex + sinαp~ey)e
jk1(sin αpx−cos αpy) (2.33)

~Hr =
Er

Z1
~eze

−jk1(sin αpx−cos αpy). (2.34)

The observed surface impedance is

Zs =

(

~Ei(0, d, 0) + ~Er(0, d, 0)
)

~ex
(

~Hi(0, d, 0) + ~Hr(0, d, 0)
)

~ez

. (2.35)

From the surface impedance Zs, one can find the reflection coefficient at
the coordinate origin

Γ =
Zs − Z1 cosαp

Zs + Z1 cosαp
ej2k1 cos αpd. (2.36)

With

Γ =
Z4 cosβ − Z1 cosαp

Z4 cosβ + Z1 cosαp
(2.37)

one obtains

cosβ = cosαp
Z1(1 + Γ)

Z4(1 − Γ)
(2.38)

where β is the complex transmission angle and Z4 =
√

µ0

ǫ4
. Now the fact

that
Z1

Z4
=

sinαp

sinβ
(2.39)

is used to obtain via a trigonometric identity

sin 2β = sin 2αp
1 + Γ

1 − Γ
. (2.40)

Finally, the equivalent complex permittivity is given by

ǫ4 =

(

sin αp

sin β

)

ǫ1. (2.41)
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Figure 2.14: Coaxial transmission line consisting of three layers.

With the equivalent material parameters a smooth coaxial transmission
line is defined, see Fig. 2.14. Its QTEM mode represents the “slow” field.
To solve the three layer model, the algorithm in section 2.4 is used.

From the resulting propagation constant γ and the wave number in the
dielectric k1 one can compute the angle of incidence of the cylindrical
wave

αc = arcsin

(

Re {jγ}
Re {k1}

)

. (2.42)

Correcting the angle of incidence

Repeating the procedure, outlined in the preceding sections, for five dif-
ferent angles of incidence αp, yields five different angles of incidence αc

of the cylindrical wave and five different propagation constants γ. As the
solved plane wave problem should approximate the original problem with
cylindrical waves as closely as possible, it is reasonable to require αc = αp.
This requirement can be fulfilled by using a quadratic approximation of
the function which relates αp to αc. The resulting correct angle α′

p is
used to find the correct propagation constant γ′ via another quadratic
function.

As already mentioned, the angle of incidence of the plane wave should
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be the same as the angle of incidence of the cylindrical wave. By assuming
αc to be a quadratic function of αp, the correct angle of incidence α′

p of
the plane wave is computed

αc = qa1α
2
p + qa2αp + qa3 (2.43)

α′

p = qa1α
′2
p + qa2α

′

p + qa3. (2.44)

Where the qan are coefficients which have to be determined. In a second
step, a quadratic function relating αp and propagation constant γ is used
to compute the correct propagation constant γ′

γ = qb1α
2
p + qb2αp + qb3 (2.45)

γ′ = qb1α
′2
p + qb2α

′

p + qb3. (2.46)

Again the qbn are factors which have to be determined.

For the determination of the qan and qbn, a standard least squares
approach is used. First the αp are written as a matrix

A =

















α2
p1 αp1 1

α2
p2 αp2 1

...
...

...

















. (2.47)

Then the resulting angles of incidence of the cylindric wave are written as
the vector ~αc and the respective propagation constants are written as ~γ.
The pseudo inverse of the matrix A is

A+ = (AT A)−1AT . (2.48)

The coefficients ~qa and ~qb are computed with this pseudo inverse

~qa = A+~αc (2.49)

~qb = A+~γ. (2.50)

The qan and qbn are the components of ~qa and ~qb.
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2.5.3 Error Analysis

To specify the remaining errors of the described technique, one first sub-
divides the errors in numerical errors and systematic errors. Numerical
errors are the result of the precision of computations, whereas systematic
errors are a result of solving approximate equations.

To quantify these errors, recall the fact that the field of the higher order
Floquet terms is strongly concentrated around the conductor surfaces.
This fact renders the following virtual algorithm almost perfect.

a) Illuminate the rough outer and inner conductor with a cylindrical
wave with a given γ0 and compute their surface impedances accord-
ingly.

b) Convert the surface impedances to material parameters of smooth
surfaces.

c) Compute γs for the smooth surface problem using the procedure
described in section 2.4.

d) Adjust γ0 in a) in such a way that steps a)–c) produce a value
γs = γ0.

The essential difference between the real and the virtual algorithm consists
in the use of a rough planar surface instead of rough cylinders. Comparing
the second step of the virtual algorithm with the real algorithm leads to an
approximated systematic error of the algorithm. First, suppose that the
solution of the cylindrical rough problem and of the planar rough problem
are given. In both cases the surface impedance can be measured at a
distance d = 1.3 µm above the center of the roughness profile. Obviously,
both surface impedances will be different. Secondly, one can de-embed
the surface impedances towards the center of the roughness profile. This
involves the use of Hankel functions for the cylindrical problem while plane
waves are used for the planar problem. Third, artificial smooth materials
are computed which will cause the same reflection as in the respective
original rough problem. Both materials are different because they are the
solution to different problems.

To give a conservative estimate of the systematic error, one assumes that
both problems should have the same electromagnetic fields and evaluate
the actual differences of the resulting fields. These fields are the solution
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of two different systems of differential equations. In the case of the planar
problem, the following system is solved

− ∂

∂z
Hy = jωǫEx (2.51)

∂

∂z
Ex − ∂

∂x
Ez = jωµHy (2.52)

∂

∂x
Hy = jωǫEz, (2.53)

whereas in the cylindric case the system (2.7)-(2.9) is solved. One can
associate the directions r and x. The direction z has the same meaning in
both coordinate systems and y replaces φ. Then both systems of equations
are identical except for (2.53) and (2.9), which differ by the term Hφ/r.
Considering a typical skin depth for 1 GHz and the radius of a 1.85 mm
center conductor, one can see that the Cartesian field components in the
conductor (i.e., below x = −1.3 µm in Fig. 2.11) differ not more than 0.5 %
from the respective field components in the cylindrical problem. This
error is smaller for higher frequencies and also for the outer conductor.
As already mentioned, the sampling of the surface impedance takes place
at x = +1.5 µm. Again, using the term Hφ/r in (2.9) as an error term one
can conclude that the planar field will deviate at x = +1.5 µm by 1.2 %
from the cylindrical field. This estimate is conservative because plane
waves are used instead of cylindrical waves for converting the surface
impedance to an artificial material parameter. In case of a rough coaxial
line, this partly corrects for the erroneous field, whereas the correction
would be perfect in the case of a smooth coaxial line.

The main reasons for using a rough planar surface instead of a cylin-
drical one are the high accuracy, the numerical efficiency and the intrinsic
error estimation of the multiple multipole solver. The numerical error of
the field solver for the planar problem is 0.13% of the field values. The
combined numerical and systematic error of the surface impedance is ap-
proximately 1.33%. At f = 70 GHz this leads to an uncertainty in the
computed propagation constant of ±0.02 1

m for the attenuation constant
and ±0.06 1

m for the phase constant.

Note that the errors due to the other steps of the real algorithm are
comparatively small. The algorithm for the solution of the smooth trans-
mission line problem has a numerical accuracy of more than 70 decimal
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Table 2.3: Error Budget of 1.85 mm line at f = 70 GHz

Type of Error Effect on γ
[

1
m

]

Surface Impedance ±0.02 ± 0.06j

Quadratic Approximation ±0.0001± 0.02j

Smooth Problem ±10−70 ± 10−70j

Total Error ±0.02 ± 0.08j

digits. Obviously, this is much more than ever needed since neither the
diameters nor the material properties are known so precisely.

Finally, the quadratic approximation in section 2.5.2 has some impact.
The respective numerical error is less than ±0.0001 1

m for the real part and
less than ±0.02 1

m for the imaginary part of the propagation constant.

An overview of the errors is given in Table 2.3. Obviously the error of
the surface impedance determines the limits of accuracy. Smaller conduc-
tor diameters will increase the systematic error of the surface impedance,
whereas higher frequencies will reduce its numerical error.

2.5.4 Measurement

This section describes the measurements which have been performed to
verify the calculations described in the previous sections. For the sake of
completeness, a comparison to other computational approaches is given.

The propagation constants of 2.4 mm and 1.85 mm coaxial transmis-
sion lines are measured with a VNA and the Multical computer program,
see [12] and [13]. In both cases the propagation constant is determined
by a line reflect line (LRL) calibration which does not make use of the
thru standard. This is important to minimize the effects of connectors.
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Figure 2.15: Attenuation constant Re {γ} of 1.85 mm and 2.4 mm coaxial trans-
mission lines over frequency. Curves ending at 50 GHz refer to 2.4 mm lines.
Note that the traces Measurement, Hoffmann, Daywitt and Sanderson for
1.85 mm lines overlay each other. For the 2.4 mm lines, only the traces Mea-
surement and Hoffmann are depicted.

Nonetheless, the lines within a calibration kit show slightly different prop-
agation constants due to variances in the connectors of the lines and in
the lines themselves, see Fig. 2.15 and 2.16. The transmission lines are
part of Agilent LRL calibration kits. The mechanical and electrical data
of the lines are given in appendix C.

The parameters listed in Table C.3 in appendix C are used to compute
the propagation constant. All quantities listed in the first column are
defined in Figs 2.8 and 2.9. The columns Daywitt and Sanderson refer to
algorithms described in [5] and [8].

Figure 2.15 shows the attenuation of the lines, whereas Fig. 2.16 gives
the difference Im {γ − jk0} (phase constant of the lines minus vacuum
wave number). The conductivity3 in Daywitt’s algorithm has been tuned
such that the attenuation matches the measurement. However, it is not
possible to achieve the measured phase constant with the same conduc-

3The conductivity does not depend on the frequency.
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Figure 2.16: Phase constant Im {γ} of 1.85 mm and 2.4 mm coaxial transmission
lines minus vacuum wave number k0 over frequency. Curves ending at 50 GHz
refer to 2.4 mm lines. The number of traces is the same as in Fig. 2.15.

tivity. This also holds for Sanderson’s formulas. Contrary to these ap-
proaches the algorithm described here matches both quantities. Among
all input parameters only the unknown conductivity of beryllium copper
was tuned to match the experiment. The tuning can be used as an in-
direct measurement of the base material conductivity. The result of the

indirect measurement is σ3 = 1.6 × 107 S
m, see as well Table C.3.

For some frequencies the deviations between the computed propagation
constant and the measured propagation constant are larger than predicted
in Table 2.3. This can be attributed mainly to connector effects. A less
important factor are incorrect material parameters or dimensions.

2.6 Transmission line theory, ports and S-parameters

In the previous sections, the electromagnetic fields of the fundamental
modes in cylindrical structures were computed. Depending on the di-
rection of propagation the electromagnetic fields of one mode are called
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forward or backward wave. Transmission line theory models these for-
ward and backward waves by the propagation constant, which has been
computed in the previous sections, and the characteristic impedance.

The characteristic impedance is the ratio of line voltage and line current
of a single wave. The line current is defined as the current in one conductor
and the line voltage is defined as the voltage between the conductors. This
definition of the characteristic impedance is only unique for the TEM
mode. In the TEM regime the characteristic impedance is

Z0 =
1

2π

√

µ

ǫ
ln

b

a
. (2.54)

For lossy lines with a QTEM mode, the voltage and current of the
line are no longer stringently defined. E.g., the current in the center
conductor and outer conductor of a lossy coaxial line are not equal due to
the displacement current in the dielectric. Thus a more general definition
of the characteristic impedance is needed. As proposed in [4], the line
current is defined as

Is = 2πaHφ(a). (2.55)

Where a is the radius of the center conductor and Hφ the tangential
magnetic field. The average power of the mode is defined on a cross
section of the coaxial transmission line as

Ps =
1

2

∞
∫

0

2π
∫

0

(

~Er × ~H∗

φ

)

· ~n r dφ dr. (2.56)

Where ~n is the normal vector of the cross section pointing in the direction
of propagation. With the average power of the mode, one can compute
the characteristic impedance

Z0s =
2Ps

|Is|2
. (2.57)

In the case of rough conductors, the concept of characteristic impedance
has to be further adapted. For the periodic line, the mean value of char-
acteristic impedance is defined by using the radius of the center conductor
ar and the magnetic field of the “slow” component for the measurement
of the current

Ir = 2πarHφ0(ar). (2.58)
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The radius ar is the distance between the center of the inner conductor
and the center of the roughness profile. Here, the mid between the highest
peak and the deepest valley of the roughness profile is called the center
of the roughness profile. Note that definition (2.58) implies a non causal
characteristic impedance, [16]. The differences between (2.58) and a def-
inition according to [16] are negligible. Thus, simplicity and sufficient
accuracy justify the use of (2.58). The power of the mode is defined and
computed from the “slow” electromagnetic field in the dielectric

Pr =
1

2

∞
∫

0

2π
∫

0

(

~Er0 × ~H∗

φ0

)

· ~n r dφ dr. (2.59)

Again, from current and power the characteristic impedance can be com-
puted

Z0r =
2Pr

|Ir |2
. (2.60)

It should not be concealed that the definitions of the characteristic
impedance for lossy smooth and lossy rough transmission lines are not
stringent. The main motivation for defining a characteristic impedance is
the possibility to compute reflection coefficients which should be as accu-
rate as possible. The goal of accurate reflection coefficients renders some
definitions of the characteristic impedance more suitable than others, but
it does not designate one correct definition. This can be easily demon-
strated on the choice of the integration path for the current. The goal
of accurate reflection coefficients clearly shows that the integration path
should be somewhere in the dielectric but it does not define at which radius
it should be. A similar reasoning holds for the characteristic impedance
of rough lossy lines.

Characteristic impedance and propagation constant are linked to the
four parameters: inductance L′, resistance R′, capacitance C′ and con-
ductance G′ per unit length. These parameters are combined to Z ′ =
R′ + jωL′ and Y ′ = G′ + jωC′. They are defined as

Z ′ = γZ0, Y ′ =
γ

Z0
. (2.61)

Transmission line theory assumes monomode operation of the coaxial
line. In reality there are always electromagnetic fields of higher modes in
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a transmission line. In VNA measurements they are weak compared to
the electromagnetic fields of the fundamental mode, see section 2.2. The
complete electromagnetic field on an area i can be projected on forward
and backward waves

~Fi = ai
~F+

i + bi
~F−

i + ~Xi, (2.62)

where ~F+
i and ~F−

i are the electromagnetic fields of the forward and back-

ward wave respectively. The practically very small field ~Xi stems from
other modes with stronger attenuation characteristic. The area i is called
port area. It delimits a region which is orthogonal to the direction of prop-
agation. The forward and backward waves are normalized to transmit one
Watt through the port area. This can be written as

P+
i = Re







1

2

∫

S

(

~E+
i × ~H+∗

i

)

· d~S







= 1 W (2.63)

P−

i = Re







1

2

∫

S

(

~E−

i × ~H−∗

i

)

· d~S







= −1 W. (2.64)

Here S denotes the port area. The projection of the total field on forward
wave, backward wave, and remaining field is made in such a way that the
remaining field carries minimum power.

Now several ports of a device can be considered. The ports are defined
in such a way that the forward wave injects power to the device. Injecting
power at one port and observing the backward waves at all ports defines
the ratios

Sji =
bi

aj
, (2.65)

where i is the output port and j is the input port. More such ratios are
defined by consecutively exciting all ports and measuring the resulting
backward waves. The double index ji can be used to arrange the ratios
into a matrix of quadratic shape. This matrix becomes an S-matrix by
specifying the characteristic impedance of each port. The S-matrix can be
transformed in such a way that the characteristic impedance of each port
is set to a prescribed reference impedance, see appendix A. In [11] the
transformed S-matrix is called pseudo S-matrix and the original traveling
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wave S-matrix is just called S-matrix. Here both types are called S-matrix
and if necessary the reference impedance is given.

From the above one can conclude that S-parameters are a very abstract
measure. First, one has the electromagnetic fields in a port area. They are
projected on modes. From this projection the wave amplitudes ai and bi

are defined. They define scattering ratios Sji which in turn are assembled
to a matrix. Then the characteristic impedances of the transmission lines
at the port areas are evaluated. With these characteristic impedances the
previously defined matrix is converted to a normalized S-matrix.

For the computation of traceable S-parameters, it is necessary to state
uncertainties for the normalized S-matrix. The required input data for
this computation are the uncertainties of the involved dimensions, of the
material parameters, and the uncertainties of the computational methods.
The final computation of uncertainties is quite complicated and is not
further pursued here. For further information see [17] and [18].



3 Coaxial Connectors and Standards

Abstract— The introduction of this chapter lists all commonly available coaxial

standards and gives their respective advantages and disadvantages. The first sec-

tion is dedicated to the modeling of plain transmission lines. After this, two models

of the 1.85 mm connector are presented: a 3D electromagnetic simulation model

and a mixed approach consisting of a 3D electromagnetic simulation plus 2D ca-

pacitance calculations. Next, an interpolation tool for a database is described. The

database consists of S-parameters resulting from different connector geometries.

The last section is dedicated to the modeling of offset short and air line standards.

3.1 Introduction

An uncalibrated VNA is a very precise but not very accurate measurement
instrument. This means it will always give nearly the same measurement
result for a given DUT but the measurement result may be far away from
the true value. This unpleasant fact is removed by calibration of the VNA.
In other words, one has to measure DUTs with known S-parameters, called
standards, to correct for the systematic errors of the VNA.

To cover frequencies up to 70 GHz in a Z0 = 50 Ω system, one has to
use coaxial standards, which have a center conductor diameter of less than
0.81 mm. It is nearly impossible to manufacture slotless connectors with
such small diameters. However, slotted connectors have to be character-
ized because they have non negligible influence on the S-parameters of
standards. New concepts for modeling slotted connectors have been de-
veloped. The resulting models are used to make the models of calibration
standards more accurate.

There are many different kinds of coaxial standards for VNA calibra-
tion. Fixed load and sliding load are energy absorbing standards. A fixed
load consists generally of a connector, a piece of transmission line and a
load element, see Fig. 3.1a. The sliding load is constructed in the same

43



44 3 COAXIAL CONNECTORS AND STANDARDS

Reference Plane Connector Offset Line Load Element

Figure 3.1a: Longitudinal cut through a female load. The load consists of a
connector, a piece of transmission line and a load element. In the case of a
sliding load, the load element is moveable.

Reference Plane Connector Offset Line Dielectric Support

Figure 3.1b: Longitudinal cut through a female open. The open consists of a
connector, a piece of transmission line and the dielectric support of the center
conductor.

Connector Offset Line Short PlaneReference plane

Figure 3.1c: Longitudinal cut through a female short. The short consists of a
connector, a piece of transmission line and the short plane.
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way as the fixed load but the load element is movable, thus the length of
the transmission line between connector and load element is adjustable.

Open and short are energy reflecting standards. An open consists of a
connector, a piece of transmission line and an insulating piece of plastic
which keeps the center conductor in place without making galvanic con-
tact to the outer conductor, see Fig. 3.1b. The short does not require
the insulating plastic because the center conductor makes direct galvanic
contact to the short plane. There are two types of shorts: offset shorts
and flush shorts. Offset shorts have an offsetting line section. Line sec-
tion and short plane are often manufactured as a single piece, see Fig.
3.1c. The flush short is a short where the short plane is located on the
reference plane of the connector. The phase response of the flush short is
mainly determined by the surface impedance of the short plane, whereas
the phase of the offset short moves as a function of the offset length.

Standards which do not entirely consist of metal often show consid-
erable differences between their computed S-parameters and actual S-
parameters. These differences arise because of the inexact characteriza-
tion of the non metallic parts. E.g., the insulating plastic of an open
is quite difficult to characterize because the permittivity of the plastic
depends largely on the way the part was manufactured. For this rea-
son, only standards which consist of metal, i.e., shorts and air lines, are
treated here. These are so called primary standards which can be used
for traceable calibrations.

Air lines are two port standards. They consist of a connector on each
side and a piece of transmission line in-between. The thru, a direct con-
nection of the VNA test ports, can be considered as a special kind of air
line with one connector and zero length. The concepts propagation con-
stant and characteristic impedance were discussed in the previous chapter
and are now used for the definition of standards.

3.2 Plain transmission line

The plain coaxial line of an air line standard is not completely uniform
but shows diameter variations, eccentrically placed inner conductor and
deformed cross sections. According to [19] the diameter variations are the
most important parameters. Diameter profiles of center and outer con-
ductor are depicted in Fig. 3.2 and 3.3. Note that the measured diameter
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variations of the slotted section will be taken into account by the model
of the connector. To account for the remaining diameter variations, the
line is sliced into segments of 0.1 mm length. This fine discretization guar-
antees that each line segment is very uniform. The propagation constant
γr(a, b) of a rough transmission line with radii a and b and its characteristic
impedance Z0r(a, b) are needed to write the S-matrix of each segment. To
compute these quantities, the propagation constant γr(a0, b0) and charac-
teristic impedance Z0r(a0, b0) of a rough air line with a0 = 0.8036 mm/2
and b0 = 1.85 mm/2 are computed. Then the propagation constant γs

and characteristic impedance Z0s of a smooth air line with radii a0 and
b0 are computed with [5]

δ =

√

2

σωµ
(3.1)

k = ω
√

µǫ (3.2)

d0 =
δ
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a

)

4b ln
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G′ = ωC′

0d0k
2a2F0 (3.9)

C′ = C′

0

(

1 + d0k
2a2F0

)

(3.10)

Z ′ = R′ + jωL′ (3.11)

Y ′ = G′ + jωC′ (3.12)

γs =
√

Z ′Y ′ (3.13)
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Z0s =

√

Z ′

Y ′
. (3.14)

The characteristic impedance Z0r and propagation constant γr of a line
with inner and outer radii a and b are then interpolated by

Z0r(a, b) = Z0r(a0, b0) + Z0s(a, b) − Z0s(a0, b0) (3.15)

γr(a, b) = γr(a0, b0) + γs(a, b) − γs(a0, b0). (3.16)

With these values the S-matrix of each transmission line segment is
computed

Si =









0 e−γr(a,b)li

e−γr(a,b)li 0









. (3.17)

Where li is the length of the i-th segment and γr(a, b) is the propagation
constant of the rough coaxial line in the i-th segment. Note that the S-
matrices can not be cascaded yet because of differing reference impedance
Zrefi = Z0r(a, b). Therefore, one transforms all S-matrices with (A.3)
and (A.1) to Zref = 50 Ω. Finally, one converts these S-matrices to T-
parameters (A.4), cascades them (A.5), and converts back to the total
S-parameters of the entire transmission line (A.6). How to model the
connectors at the ends of such a line will be discussed next.

3.3 The slotted 1.85mm connector

Historically, electrical characteristics of coaxial connectors are first com-
puted by Whinnery et al. [20], [21]. Mode matching theory was used
to develop simple equivalent circuits for steps in wave guides and coaxial
lines. Mode matching can be used to compute the S-parameters of simple
geometries like steps, whereas in particular narrow gaps pose a problem.
[20] and [21] are the basis for the chapter on coaxial discontinuities in [22].
Somlo [23] used [21] to provide computer calculated and therefore more
accurate charts and tables of the step capacitance.

MacKenzie and Sanderson [24] gave another formula to compute the
voltage standing wave ratio (VSWR) of a pin gap in conjunction with a
slotted female contact. The assumption, that only the TEM mode exists
in the coaxial line, leads to a formula based on capacitance computation of
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Figure 3.2: Radius of center conductor of a 1.85 mm air line. The bump on the
right side is the female connector. The U95 measurement uncertainty for the
radius is approximately 0.5 µm.

the different sections of the coaxial connector. The approach of computing
the capacitance per unit length is useful in the case of TEM-like wave
propagation, but it is not very accurate if the electromagnetic fields under
consideration are very different from the TEM mode.

Later, computer simulations were used to solve coaxial field problems.
Gwarek [25] used the finite difference time domain (FDTD) method to
investigate coaxial discontinuities. For the finite element method (FEM) a
formulation for coaxial problems was found by Wilkins [26]. Results were
cross-checked with the mode matching method. Szendrenyi [27] used a
commercial FEM field solver (HFSS) to investigate the effects of pin gaps
in cylindrically symmetric structures.

General information on coaxial connectors can be obtained from the
P287 standard [28]. A literature list with papers on coaxial connectors is
given in [29].

In [30] non cylindrically symmetric connectors are investigated with
FDTD and FEM methods. The results are used to generate a database
which allows to determine the S-parameters of a slotted connector without
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Figure 3.3: Radius of outer conductor of a 1.85 mm air line. The U95 measure-
ment uncertainty for the radius is approximately 0.75 µm.

using an electromagnetic field simulator. Using this database the effects
of very narrow pin gaps are investigated. The following is a more detailed
version of [30].

3.3.1 Geometry of the connector

Each manufacturer has its own design of the 1.85 mm connector because
the P287 standard does not define the shape of the female contact fingers.
Even connectors from one manufacturer differ among each other due to
tolerances in production. These two sources of dimension variability mo-
tivate the following definition of parameterized geometries.

The geometry of the slotted connector shown in Figs 3.4-3.9 is best
described by its production process. The production of the male side
of the connector is rather trivial. To manufacture the female part of the
connector, one usually lathes the end of the center conductor to the shape
depicted in Fig. 3.4. Next, the borehole is drilled and chamfered and slots
are cut according to Fig. 3.5. Finally, the contact fingers are bent to the
right position. The assembled connector is depicted in Figs. 3.6, 3.7 and
3.8. Fig. 3.6 shows a longitudinal cut while Fig. 3.7 gives a lateral cut
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sl
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0

Figure 3.4: Lathing cross section for the female part of a 1.85 mm connector.
The coordinate cx is used to designate positions in the slotted section. For
better visibility the differences between d1 and d3 are exaggerated.

sw

dh

2

Figure 3.5: Front of female part after drilling the hole and cutting the slots.
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Pin Gap

Slotted Contact

Male Pin

Outer Conductor

Outer Conductor

Port 1 Port 2

Lateral
Cut

Figure 3.6: Longitudinal cut through the connector. The lateral cut shown in
Fig. 3.7 lies in-between the S-parameter ports. The main elements of the
geometry are the pin gap and the slotted female contact. The height profile
of the slotted female contact is exaggerated for reasons of visibility.

Outer Conductor

Male Pin

Contact Finger

Longitudinal
Cut

Figure 3.7: Lateral cut through the symmetry axis on the height, where the
female contact fingers make galvanic contact to the male pin. The diagonal
dotted line indicates the cut shown in Fig. 3.6 and Fig. 3.8.
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Figure 3.8: Details of the pin gap. All edges are chamfered to 45 degrees. See
Table 3.1 for the naming and range of the geometry parameters.

Rubbing Mark

Figure 3.9: Model of a male pin with rubbing mark. The male pin was covered
with Prussian blue. The thin, bright rubbing mark is a result of repeated
connections.
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through the slotted female contact. Further geometrical details of the pin
gap region are given in Fig. 3.8.

A last detail of the connector geometry, which can not by illustrated
with the production process, is the width of the contact between contact
finger and male pin, see Fig 3.9. The contact-width was measured with
Prussian blue, i.e., the male pin was covered with a thin layer of Prussian
blue and the mating process was repeated several times in the same an-
gular position using a watchmakers lathe. Afterwards the contact-width
was determined by inspection with a microscope to be approx. 80 µm.

The variables mentioned in the previous description and figures are
listed with the according ranges in table 3.1.

Table 3.1: Meaning of Variables

Parameter Range Full name

sl 0 . . . 2000 µm Slot Length

sw 30 . . . 150 µm Slot Width

d1 800 . . .880 µm Top End Diameter

d3 800 . . .880 µm Bottom End Diameter

dh 511 . . .652 µm Hole Diameter

fo 5 . . . 30 µm Female Outer Chamfer

fi 30 . . . 110 µm Female Inner Chamfer

pg 1 . . . 100 µm Pin Gap

mi 9 . . . 30 µm Male Inner Chamfer

mo 5 . . . 30 µm Male Outer Chamfer
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Table 3.1: Continuation

Parameter Range Full name

f 0 . . . 71 GHz Frequency

3.3.2 Electromagnetic simulation

The EM-simulation of the setup given in Fig. 3.6 was carried out with two
different simulation tools. CST Microwave Studio1 is a finite integration
time domain (FIT) code, which uses structured grids. The FIT tech-
nique is very similar to the FDTD technique. HFSS2 is a finite element
frequency domain code using unstructured meshes.

Under HFSS it is important to mesh the curved surfaces sufficiently fine.
We found that at least 90 nodes on the circumference of conductors are
needed. Otherwise the field simulator produced modes strongly different
from the coaxial TEM mode thus falsifying the result. The standard rule
that regions with big field gradients should have finer meshing than other
regions applies as well. In contrast, Microwave Studio yields good results
with automatic meshing.

Numerical simulations will hardly ever deliver exact results. Therefore
it is important to validate the numerical results. Evidence for accurate
simulation results are (1) convergence with finer mesh, (2) plausibility of
obtained S-parameters and (3) agreement of the results from both ap-
proaches. Simulation results from both programs converged with finer
mesh and also the S-parameters appeared plausible when changing the
geometry. For example using bigger outer chamfers has a similar effect
as a bigger pin gap. Results of both simulation programs showed an
agreement for representative samples |S11HFSS − S11CST| < 0.001. These
observations lead to the conclusion that the results have an uncertainty
of ±0.001 over the whole frequency range.

Using a PC of the latest generation, the simulation of one geometry
takes between 20 min and 5 h depending on the pin gap. Small pin gaps

1CST Microwave Studio Version 5.1.3 June 27. 2005
2Ansoft HFSS Version 9.2.1 May 7. 2004
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do cd

cs

csw
dm

Figure 3.10: Geometry of cross section of a coaxial 1.85 mm connector. The
dimensions do = 1.85 mm and dm = 511 µm are standardized in [28]. The
diameter of the disk sections cd and the spacing csw between them is given
in (3.19) and (3.18). The disk sections are moved towards the center by cs,
see (3.20). Here only one section is moved to illustrate the process.

need very fine meshing, and in the time domain simulation also very fine
time steps. Therefore simulation time increases with decreasing pin gap.

For parameter studies these simulation durations would be too long,
thus the connector is split into two parts. The first part is the section
of the connector which is slotted and the second part contains the pin
gap. The subdivision is motivated by the fact that the electromagnetic
fields of the slotted part are TEM-like, whereas the fields in the pin gap
section can be regarded as nearly static. Comparison of S-parameters
which are computed for the complete connector as depicted in Fig. 3.6 and
S-parameters which are computed with the subdivided connector showed
an agreement of |S11div − S11CST| < 0.001.

3.3.3 The subdivided model

The electrical model of the slotted section depends on the dimensions of
the contact fingers and of the male pin. These dimensions can either
come from measurements or they are a result of a simplified model. In
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Figure 3.11: Absolute electric field in the slotted section of a coaxial 1.85 mm
connector. The color indicates the absolute electric field | ~E| and the arrows
indicate strength and direction of the electrical field ~E.

the simplified model of the geometry, the parameters sl, sw, d1, d3 and
dh have to be set (Fig. 3.10). The dimensions of the cross section as a
function of the longitudinal position cx are given by

csw = sw (3.18)

cd =
d1 − d3

sl
cx + d3 (3.19)

cs =
dh − dm

2
(1 − cx

sl
). (3.20)

The variable cx is defined in Fig. 3.4. Next, the capacity per unit length
of the cross section is computed, see Fig. 3.11. From the capacitance an
equivalent diameter can be computed

a′ = b e
−

2πǫ
C′ . (3.21)
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Figure 3.12: Geometrical model of pin gap section. The diameter dr replaces the
slotted section, see (3.21). The diameters dm = 511 µm and dc = 803.6 µm
are set to the values specified in [28].

Here C′ is the capacitance of the cross section per meter and ǫ is the
permittivity of the dielectric. Again b designates the radius of the outer
conductor. Using b and a′ with the transmission line algorithm described
in section 3.2 yields the S-parameters of the slotted section.

The model of the pin gap shows a circular symmetry. It is depicted
in Fig. 3.12. The diameter of the coaxial line which replaces the slotted
section is set to dr = 2a′, where a′ is the equivalent radius at the top of
the slotted contact. The S-parameters of this section are computed with
CST Microwave Studio. Finally, the S-parameters of the slotted section
and of the pin gap are cascaded.

3.3.4 Database lookup

An interpolation tool has been developed to even further speed up the
computation of connector S-parameters. The interpolation tool requires
only the geometry parameters listed in Table 3.1 to calculate the
S-parameters in a few seconds. The resulting speed up factor is about
3000 as opposed to brute force EM-simulation.
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Figure 3.13: Absolute error of the interpolation tool versus CST Microwave
Studio simulation results |S11Simu − S11Inter| over the frequency. The ripple
stems from the search to the closest point in the database.

The interpolation tool consists of two databases. One for the capaci-
tances per meter of the cross sections and another for the S-parameters of
the pin gap. There are 153 capacitances of different cross sections stored
and 384 S-matrices of pin gap sections.

The database contains samples arranged in a grid where each grid point
is a geometrically possible combination of values given in Table 3.2. E.g.
csw = 50 µm and cs = 70.7 µm is not a possible combination, see Fig.
3.10. The interpolation algorithm uses the data points in the database,
which are closest to the requested parameter combination and performs
an n-th degree polynomial interpolation for each of the parameters. The
polynomial degree is n = 1 (linear interpolation) if only two values are
available in the database. If 3 values are available, n = 2 is used and for 4
available values n = 3 is used. If 5 values are available, n = 3 is used and
the coefficients of the polynomial are determined with a least squares fit.
If more than 5 values are available, n = 3 is used and the coefficients are
determined with a least squares fit from the 5 values which are closest to
the requested point. The used order of the polynomial and the number
of computed values per parameter are a result of practical experiments.
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Thereby it was observed that additional computed values are only helpful
if they are in the neighborhood of the requested point. Another practical
observation is that increasing the order of the polynomial is useful up to
n = 3, but using n = 4 degraded the accuracy of the approximation.

Table 3.2: Points in Database

Parameter Points Interpolation Order

csw 30, 50, 110, 150 µm 3

cd 0.8, 0.8036, 0.81, 0.82, . . . , 0.88 mm 3

cs 0, 14.1, . . . , 70.7 µm 3

dr 0.78, 0.80, 0.82, 0.84 mm 3

fo 5, 30 µm 1

fi 30, 70, 110 µm 2

pg 1, 34, 67, 100 µm 3

mi 9, 30 µm 1

mo 5, 30 µm 1

f 0, 0.071, 0.142, . . . , 71 GHz 3

In order to verify this approach, the reflection coefficient S11Simu of a
connector with parameters given in Table 3.3 has been computed with
Microwave Studio and compared with the respective quantity S11Inter ob-
tained by the interpolation tool.

The quality of the interpolation tool can be assessed by the quantity
|S11Simu − S11Inter| plotted in Fig. 3.13. The ripple in Fig. 3.13 stems
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Table 3.3: Parameter Settings for Examples

Parameter Fig. 3.13 Fig. 3.14 Fig. 3.15

sl 1.4 mm 1.4 mm 1.4 mm

sw 30 µm 30 µm 30 µm

d1 854 µm 854 µm 854 µm

d3 803.6 µm 803.6 µm 803.6 µm

dh 540 µm 540 µm 540 µm

fo 10 µm 5 µm 5 µm

fi 50 µm 100 µm 30 µm

pg 50 µm 1, . . . , 100 µm 1, . . . , 100 µm

mi 10 µm 20 µm 20 µm

mo 10 µm 5 µm 5 µm

f 0, . . . , 71 GHz 0, . . . , 71 GHz 0, . . . , 71 GHz

from the search to the closest point in the database. Errors are relatively
big each time the requested parameter combination is in the mid between
two database points on the frequency axis. The error becomes smaller
when the requested parameter combination is close to a database point
on the frequency axis.
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3.3.5 Narrow pin gaps

Motivated by reports [31] on calibration inconsistencies between LRL cal-
ibration and Offset Short calibration, the effects of very small pin gaps
were investigated. In the Offset Short calibration, the pin gaps are always
well controlled. In the LRL calibration, depending on the operator, very
small pin gaps can occur due to the floating center conductors of air lines.
Departing from the trivial assumption: the smaller the pin gap the smaller
the reflection factor, it was found that by careful design of the slotted fe-
male section it is possible to put the minimum reflection coefficient to a
specific pin gap size. This is well known and called compensation, [24].
But very small pin gaps in combination with big female inner chamfers
were found to provoke S-parameters, which are not conform to the afore
mentioned reasoning. A drastic increase of the reflection factor at fre-
quencies above 50 GHz can be observed for decreasing pin gaps. In Fig.
3.14 and 3.15 the effect is clearly visible for the 1 µm and 5 µm pin gaps.
Note that both figures use the same setup except for differences in the
female inner chamfer.

The phenomenon can be explained by field plots obtained from the
EM-simulation. The skin effect restricts the current to the surface of the
conductor. Due to the female inner chamfer, there is an empty volume
with a surface current. Energy is stored in this volume in form of a
magnetic field. The narrow pin gap between male side and female side
stores energy in form of an electric field. The female inner chamfer volume
and the pin gap can be seen as a resonant circuit. This resonant circuit
is the explanation of the atypical S-parameters for narrow pin gaps.

3.4 Standards

3.4.1 Air line

Air lines and offset shorts can be decomposed to the building blocks con-
nector, plain coaxial line and short plane. The S-parameter model of the
connector and of the plain coaxial transmission line have already been
described in the previous sections. Thus one can readily compute the
S-parameters of an air line standard by cascading the S-parameters of its
connectors and of the plain transmission line. This yields the S-parameters
of the air line standard with attached connectors. Depending on the defi-



62 3 COAXIAL CONNECTORS AND STANDARDS

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Frequency [GHz]

|S
1
1
S

im
u
|

 

 

pg=0.001mm

pg=0.005mm

pg=0.01mm

pg=0.02mm

pg=0.05mm

pg=0.1mm

Figure 3.14: Reflection coefficient of connector with big female inner chamfer.
The geometry parameters are given in Table 3.3.

nition of the port some parts, e.g. a slotted section, have to be subtracted
from this model.

3.4.2 Offset short

The S-parameter model of the offset short is very similar to the model of
an air line standard. The connector and the offsetting plain coaxial line
are modeled with the already known S-parameter building blocks. The
combination of these two building blocks yields S-parameters S. As a last
building block, the short plane has to be added. Its reflection coefficient
is computed according to [32]

Zs = (1 + j)

√

ωµ

2σ
(3.22)

Z0p =
Zs

2π
ln

(

b

a

)

(3.23)

Γ =
Z0p − Z0

Z0p + Z0
(3.24)
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Figure 3.15: Reflection coefficient of connector with small female inner chamfer.
The geometry parameters are given in Table 3.3.

This reflection coefficient is computed with the characteristic impedance
of the line Z0. Thus the reflection coefficient has to be normalized to
Zref = 50 Ω. After this the system of equations which describes connector
and line (S) and the equation which contains the reflection coefficient Γ
are written as one system. Finally, this system is solved for the input
reflection coefficient.

Another less accurate possibility to compute the S-parameters of an
offset short is to prescribe its model and to determine the parameters
of the model during calibration, see [33]. This approach is particularly
interesting if no reliable mechanical dimensions of the offset short are
known.
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4 Calibration Algorithms

Abstract— In the introduction of this chapter, the concepts of VNA calibration

are sketched. Then a more detailed explanation of the VNA architecture and its

modeling are given. In the subsequent section, some well known statistical models

commonly used for VNA calibration are compared with the new statistical model.

Next, the new statistical model is explained in detail. Then this statistical model is

converted into a formula for calibration. As one of the last steps, the formula for

calibration is solved numerically. Finally, the new algorithm and some well known

calibration algorithms like Multical are tested for accuracy and stability.

4.1 Introduction

An uncalibrated VNA is a measurement instrument which gives raw S-
parameters of a DUT. Raw means in this context that there is no cor-
rection applied to the S-parameters. The correction is required because
the technical realization of the VNA maps the S-parameters of the DUT
to the raw S-parameters. This mapping is of central interest for VNA
measurements because if it is known, one can invert it and thus deduce
the S-parameters of the DUT from the raw S-parameters.

The mapping can be represented as an S-matrix. A m-port VNA can
be represented by a 2m × 2m S-matrix. Depending on the architecture
of the VNA some of the elements of the 2m× 2m S-matrix will be set to
zero. The remaining elements are depending on many factors and have
to be determined. An underlying assumption of the representation of the
VNA as a S-matrix is that all components of the VNA are linear.

Here, the position of the zero elements of the S-matrix describing the
VNA is called structure of the VNA S-matrix. It depends on the architec-
ture of the VNA and the measurement setup. In former times some two
port VNAs had three directional couplers and three receivers. Now almost
all two port VNAs have four receivers and couplers. In the following this
modern two port VNA will be treated in detail. Nonetheless the presented
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concepts are applicable to VNAs with arbitrary architecture and number
of ports.

Once the structure of the VNA S-matrix is known, one has to determine
the non-zero elements of the S-matrix. One can extract the coefficients by
measuring standards and reading the raw S-parameters. After performing
a sufficient number of measurements, one can write a system of equations
which contains the S-parameters of the standard, the measured raw S-
parameters and the non-zero elements of the VNA S-matrix. Depending
on the structure of the VNA S-matrix and the used standards, the system
of equations is often non-linear and thus not trivial to solve.

If additional standards are measured, one is confronted with an over-
determined non-linear system of equations. Usually such a system has no
exact solution. Nonetheless, it is useful to measure more standards than
necessary because this allows one to correct for errors. The new Bayesian
calibration algorithm, presented here, is derived from a statistical model
of the calibration process. It uses this model to find a solution of the over-
determined non-linear system. The presented algorithm is not restricted
to a special kind of VNA architecture. Another important feature of the
presented algorithm is its accuracy and robustness against poorly defined
standards.

4.2 VNA architecture

The architecture of a two port VNA with four receivers is depicted in Fig.
4.1. The ports are the interface between the VNA and the DUT. The
place where the S-parameters are physically measured in the VNA are the
receivers. They digitize the amplitude and phase of the electromagnetic
signal at their input ports and produce the raw S-parameters.

The relationship between the raw S-parameters and the S-parameters
of the DUT is described by the VNA S-matrix. It is constructed from the
S-parameters of the individual building blocks of the VNA, see Fig. 4.1.

The radio frequency (RF) source of the VNA is usually a tempera-
ture controlled crystal oscillator or an Yttrium Iron Garnett oscillator.
The source signal frequency is usually multiplied or divided by adjustable
phase locked loops. In terms of S-parameters, a source is a simple one
port device which exhibits some reflectivity.

The transmission lines which connect the different building blocks are
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DUT

R1 R2 R3 R4

Port 1 Port 2

Figure 4.1: Schematic diagram of a two port VNA. The source can be switched
either to port one or two. The signal is then split up via two directional
elements to the receivers and to the DUT. The reference receivers R1 and R4
measure the amplitude and phase of the incoming wave, whereas the receivers
R2 and R3 measure the reflected and transmitted waves.

usually semi rigid cables. They can be described with 2 × 2 S-matrices.

The directional elements are usually VSWR bridges or directional cou-
plers. VSWR bridges are used up to approximately f = 4 GHz and
directional couplers are typically used for frequencies in the range of
f = 1 . . . 100 GHz. For high power applications, a circulator can be used
as directional element. All these implementations of directional elements
can be described with a 3 × 3 S-matrix.

The switch is either a mechanical one or a solid state switch. In both
cases the switch can be described by a 3 × 3 S-matrix. Note that each
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state of the switch requires one complete S-matrix for its description. If
solid state switches are temperature controlled, they are more repeatable
than mechanical switches.

The receivers are usually heterodyne receivers, but for economic reasons
sometimes homodyne receivers are used. Both realizations are used to
measure wave intensities. The ratios of the measured wave intensities are
the raw S-parameters. In terms of S-parameters, a receiver is a reflective
one port device.

The VNA S-matrix can be computed by writing all S-matrices of the
components into one system of equations and solving for the incoming and
outgoing wave quantities at the test ports and the sums of incoming and
reflected wave quantities at the receivers. By rearranging, the S-matrix of
the VNA can be constructed. The single elements of this matrix are often
called error terms. The VNA S-matrix is not a classical S-matrix. While
the test ports are classical ports with a characteristic impedance, the ports
where the raw S-parameters can be read are logical ports. They consist
of two separately measured wave intensities which are mathematically
combined to form S-parameters.

Due to variations such as, e.g., temperature drift, cable bending, insta-
ble test port cables etc., it is not possible to compute one fixed S-matrix
for a given VNA. Instead, the S-matrix of the VNA has to be determined
for each measurement setup separately. This means the non-zero elements
of the VNA S-matrix have to be determined or in other words the VNA
has to be calibrated.

4.3 Introduction to calibration algorithms

Calibration consists of the measurement of standards and subsequently
calculating the correction coefficients of the VNA. During the measure-
ment of standards (Fig. 4.2) three different types of errors occur. First,
the calibration standards introduce errors due to differences between the
standards and their definitions (error in standards). Errors in standards
are partly systematic but unknown and partly random. Second, the mea-
surement instrument itself introduces random errors because the proper-
ties of the instrument change from measurement to measurement (instru-
mentation error). Third, reading the scales of the VNA introduces errors
because only a finite number of digits are considered. This random error
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Figure 4.2: Model of the measurement process: The standard influences the
VNA which produces raw S-parameters. Each part in this chain may poten-
tially contribute errors (dark grey fields) which can be taken into account by
the calibration algorithm.

is called the scale reading error.

Calibration schemes differ in how they treat these errors. Some schemes,
e.g. the plain LRL in [34], simply ignore the errors and use a minimum
number of standards. More advanced over-determined calibration schemes
utilize an increased number of standards and minimize some of the errors
to increase the measurement accuracy. Among microwave measurement
instruments this principle was first applied to slotted lines and six port
reflectometers, [35], [36] and [37].

For VNAs an over-determined version of the LRL scheme is given in
[12]. It assumes and minimizes Gaussian errors in LRL standards but
does not account for instrumentation errors. The Multical [13] computer
program is based on this minimization technique. A more general cali-
bration algorithm can be constructed by minimizing both Gaussian scale
reading errors and Gaussian errors in the standards. StatisticalTM is a
software program that uses this principle, [38] and [39]. As the impact of
the different types of errors varies for different calibration schemes, it is
sometimes reasonable to ignore some of these errors.

The algorithm presented here, see [40], minimizes instrumentation er-
rors and errors in the standards because those are the most important
errors. Scale reading errors are negligible for VNA measurements. The
errors are described by an arbitrary (possibly non-Gaussian) probability
density function (pdf). Utilizing Bayes’ formula, a minimum variance un-
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biased estimator for the VNA correction coefficients is developed. The
numerical implementation of this estimator makes use of optimization
techniques and Monte-Carlo integration. The algorithm is tested with the
LRL calibration. In-house versions of StatisticalTM, Multical and a plain
LRL algorithm are developed and compared to the new algorithm. The
comparison highlights differences in accuracy and stability for extremely
high or low system impedance, non-Gaussian S-parameter distribution
of standards and poorly defined standards. It was found that the new
algorithm is more stable and more accurate in all cases investigated.

4.4 Models of measurement and calibration

In this section a new mathematical model of the VNA measurement pro-
cess is described. This model is used as a starting point for describing
the calibration procedure which is essentially a measurement of known
devices.

4.4.1 Model of the measurement process

Vector network analysis is a measurement process, in which the VNA
interacts with the DUT. The outcome of this interaction is a set of mea-
surement data which consists — assuming an m-port VNA — of the m2

raw S-parameters of the DUT. For a mathematical description of the mea-
surement process, three sets of variables are defined:

r̃: The m2 raw S-parameters given by the VNA with r̃ ∈ Cm2

or
dim(r̃) = m2.

ṽ: A set of n complex parameters describing the VNA, e.g., the well
known 8-term model or the 12-term model of a 2-port VNA, which
both assume linearity of the VNA. It is ṽ ∈ Cn or dim(ṽ) = n.

s̃: The m2 S-parameters of the standard or DUT. As for r̃ it is s̃ ∈ C
m2

and dim(s̃) = m2.

These sets of variables are similar to vectors and at this point they can
be actually seen as vectors. However, in the following their definition will
be enhanced in a way, which makes clear that they have properties which
are not vector-like.
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Figure 4.3: 2-Port measurement setup consisting of DUT, VNA, and measure-
ment results. The measurement process involves three sets of true parameters:
r̃ True raw S-parameters (4 for a 2-port calibration)
ṽ True parameters of the VNA error model (typically 7...15 for a 2-port cal-
ibration)
s̃ True S-parameters of the DUT (4 for a 2-port DUT)

A particular measurement set-up is depicted in Fig. 4.3 and can be
described by

r̃ = g(ṽ, s̃), (4.1)

where r̃, ṽ and s̃ are the true values for one particular measurement. The
system function g() of the measurement process reflects the S-parameter
model of the VNA. It is effectively a set of m2 different complex valued
functions of the common n + m2 variables ṽ and s̃. Note that g() takes
only the true parameters (with tilde) as arguments.

True parameters (with tilde) designate the results of a virtually perfect
computational process executed for each single measurement. This pro-
cess includes the definition of ports and the perfect solution of Maxwell’s
equations for the whole setup consisting of VNA and DUT.

One can neither determine nor observe the absolutely true r̃, ṽ and s̃
due to finite accuracy and precision in mechanical and electrical measure-
ments. These variables change from measurement to measurement.

For this reason, the whole measurement process is considered a statis-
tical process. One introduces the variables r ∈ C

m2

, v ∈ C
n and s ∈ C

m2

which are defined to be invariant during several subsequent measurements.
The relation between the stable quantities r, v and s and the true values
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r̃, ṽ and s̃ is given by

r̃ = r, (4.2)

ṽ = v + β, (4.3)

s̃ = s + ς. (4.4)

Thereby the (most likely small) uncertainty variables β ∈ Cn and ς ∈ Cm2

represent the following shortcomings of VNA calibration:
Instrumentation errors β
Temperature drift, cable movement, mechanical shock, nonlinearities, quan-
tization errors of the analog-to-digital converter, noise etc. result in differ-
ences β between the VNA parameters v, which are defined to be invariant,
and the true parameters ṽ.
Errors in standards ς
Limited connector repeatability, dimensional uncertainties, inexact con-
ductivity, uncertainties in the computation of standards etc. result in
differences ς between the calculated value of the standard s and its true
value s̃.
Scale reading errors
Typically more than 8 digits of the raw S-parameters r can be read from
the VNA. DUTs and VNA setups with the best available repeatability
show measured raw S-parameters r which are only stable up to the fourth
digit. This is the reason why scale reading errors are considered negligi-
ble. Consequently there is no uncertainty variable in (4.2).
The graphical representation in Fig. 4.4 shows how the uncertainty vari-
ables influence the measurement.

In its initial state a VNA is not calibrated. In other words, the VNA
parameters v are unknown.

One can calibrate a VNA by measuring standards. They are essen-
tially DUTs with known S-parameters s. The measurements of the stan-
dards produce raw S-parameters r. The raw S-parameters r and the S-
parameters s of the standards are the input to the calibration algorithm.
As output the calibration algorithm determines an estimate v̄ of the VNA
parameters.

Once the VNA parameters v are estimated a partially inverted form of
(4.1) can be used to determine the S-parameters of any given DUT

s̃ = G(r̃, ṽ). (4.5)
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Figure 4.4: The measurement model for over-determined calibration includes
errors in the calibration standards and in the VNA.

The variables s̃, r̃ and ṽ in (4.5) have to be replaced by s, r and v because
the true parameters are not known. Now (4.5) results in s and thus the
S-parameters of the DUT can be computed from r and v.

4.4.2 The system of equations used for calibration

Since dim(v) (number of VNA parameters to be determined by the cali-
bration) is larger than dim(r) (number of raw values obtained by a single
measurement) it is clear that several standards are needed to find all VNA
parameters. If one uses more standards than required, the calibration is
called over-determined. The advantage of an over-determined calibration
is that it accounts for the aforementioned uncertainties.

Measuring an appropriate set of l standards yields raw S-parameters r
for each standard. Substituting (4.2. . . 4.4) into (4.1) results in a system
of dim(r) = m2 equations for each measurement. These l systems of
equations for individual measurements can be combined to form one larger
system of equations which is referred to as function g′. To write the
function g′ properly, one must distinguish between the variables of all l
measurements. For compact notation the primed variables r′, s′ and β′, ς ′

are introduced, where r′ is a short notation for all raw values of l standards
and s′ is a short notation for all S-parameters of l standards. Therefore,
dim(r′) = dim(s′) = lm2. Consequently the uncertainty variables are
built the same way, thus β′ and ς ′ are short notations of the uncertainty
variables of all l measurements. Therefore, dim(ς ′) = lm2 and dim(β′) =
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ln.
This notation and (4.1)-(4.4) are used to describe the measurement of

several standards
r′ = g′(v, s′, β′, ς ′). (4.6)

Due to the non linear nature of the function g′ it is difficult to solve
(4.6) directly for the VNA parameters v. Moreover, the structure of the
function can vary significantly when different sets of standards are used.
In fact, while the raw values r′ are easily obtained by merely reading the
display of the VNA, the S-parameters of the standards s′ can be computed
by solving Maxwell’s equations for the geometry and material parameters
of the standard. However, these computations are of finite precision.

For certain calibration methods, it is common practice to leave some
unknown parameters in s′ and to find them later as part of the result of
the calibration. In such cases one can write the S-parameters s′ as

s′ = s′d + S(s′u). (4.7)

Thereby s′d denotes the known S-parameters of the standards while s′u
stands for some (complex) quantities yet to be determined, e.g., a propa-
gation constant of a line. The function S() converts the parameters s′u to

S-parameters of the standards. Note that s′d ∈ Clm2

and s′u ∈ Cq where q
depends on the type and number of the partly described standards.

Based on the above it can be stated that calibration is a procedure which
determines v or s′u out of the raw values r′ which are read from the VNA
display and the known S-parameters s′d of the standards. Thereby the
uncertainties β′ and ς ′ are treated according to their statistical behavior.

4.4.3 Statistical description of measuring standards

Consider a given VNA with given standards as a starting point. The
standards s′ and the complex parameters v describing the VNA are set
to fixed values, whereas the uncertainties β′ and ς ′ are random variables.
The function g′ results in the raw S-parameters r′ in dependence of v, β′,
s′ and ς ′. The set Uv,s′ contains all tuples (β′, ς ′) which are allowed by
the models of the standards and the VNA. Therefore, (β′, ς ′) ∈ Uv,s′ . The
conditional pdf1 p(β′, ς ′|s′, v) assigns a probability density to each point in

1The notation p(β′, ς′|s′, v) is shorter than the standard notation for pdfs. It is used
because the distinction between random variables and integration variables is not
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Figure 4.5: Bayesian Network from which the pdf p(β′, ς ′|s′) is derived. White
variables are observable whereas gray variables are not observable. The arrow
direction indicates the causality in the interaction between variables.

Uv,s′ . This pdf of β′, ς ′ under the condition of s′, v is nonnegative and its
integral on Uv,s′ equals one. Note that dependence of p(β′, ς ′|s′, v) on s′, v
makes it possible to account for nonlinearities of the VNA. The Bayesian
network shown in Fig. 4.5 describes the probabilistic dependencies (and
independencies) of the variables involved. Although the structure of the
Bayesian network does not account for nonlinearities of the VNA, one
could easily include these by adding arrows from v, s′ and ς ′ to β′. In
the following a linear VNA is assumed although one could easily extend
the presented algorithm to nonlinear VNAs. A practical reason for this
restriction is that it is quite challenging to define p(β′, ς ′|s′, v) for a non-
linear VNA. In the linear case, β′ and ς ′ do not depend on v. Thus the
pdf p(β′, ς ′|s′) is used instead of p(β′, ς ′|s′, v).

The pdf p(β′, ς ′|s′) reflects uncertainties in the standards as well as
uncertainties in the VNA. Those two groups of parameters are treated in
a slightly different way. The VNA parameters ṽ = v+β are assumed to be
unconstrained and there are no reliable a priori known values for v. The
only assumption is that ṽ is fairly stable and varies from measurement
to measurement with a standard deviation which does not depend on the
yet unknown value v. On the other hand, the parameters s̃′ = s′ + ς ′

often have known expectation. Moreover, restrictions due to passivity

necessary in the context of this thesis. An example for the standard notation would
be a pdf pA(a) where A is the random variable and a the integration variable.
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and reciprocity of the standards affect Uv,s′ . The resulting dependence
of ς ′ on s′ is reflected by the direct arrow from s′ to ς ′ in the Bayesian
network (Fig. 4.5) as well as in the notation p(. . . |s′).

Since many physical factors affect the VNA parameters v it is reason-
able to assume a multivariate Gaussian distribution for β′ (central limit
theorem [41]). The mean values of β′ are set to zero in order to obtain
unbiased results. The choice of the respective covariance matrix is based
on a physical analysis of the calibration setup as well as on experience. A
procedure for defining the covariance matrix of the VNA is described in
section 4.8.1.

Typical metrology models of calibration standards depend on more than
20 geometry and material parameters. The large number of different
contributions to the uncertainties of the standards ς ′ leads to a nearly
multivariate Gaussian distribution for each component of ς ′. However,
for passive standards the components of s̃ = s′ + ς ′ must satisfy the
classical restrictions of passive reciprocal systems, [42], [43] and [44]. This
implies that the absolute value of the respective components in s′+ς ′ must
not exceed one. As a consequence the set Uv,s′ is restricted to tuples
(β′, ς ′) where passivity of the standards is guaranteed. This can lead to
a truncated multivariate Gaussian distribution as shown in Fig. 4.6. The
first step to define the ς ′ dependence of p(β′, ς ′|s′) is to compute the S-
parameters of the standard from a physical model. The same model is
also used in a Monte-Carlo simulation to compute the pdf of the physical
model. As a second step, one assumes a multivariate Gaussian distribution
p0(β′, ς ′|s′) for the S-parameters of the standard. Next, p0(β′, ς ′|s′) is
truncated. Then the covariance matrix and the mean values of the original
pdf p0(β′, ς ′|s′) are adjusted in such a way that the truncated distribution
matches the distribution of the physical model. Finally, the truncated pdf
is multiplied with a constant to set its integral on Uv,s′ to one.

Since usual standard deviations of precision metrology components are
fairly small it is possible to omit the truncation for those components of ς ′

which are associated to s′-components with absolute values significantly
smaller than one.

The versatility of the statistical model can be demonstrated with a
typical measurement setup where one port is connected to the VNA via
a semi-rigid cable (high stability of cable S-parameters) and the other
port is connected to the VNA by a flexible cable (low stability of ca-
ble S-parameters). In this case one can attribute a high uncertainty to
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Figure 4.6: The not truncated 2D Gaussian pdf with mean value µ = 1 + j0
and standard deviation σ = 0.15 is truncated at the unit circle to yield the
pdf of S12 of the thru. For the sake of visibility, σ is here much larger than
in practical applications. Note that the pdf p(β′, ς ′|s′) is a function of the
uncertainties only and not a function of the S-parameters (s′) as it is plotted
in this picture.

those components of v which are associated with the flexible cable and
a lower uncertainty to components associated with the semi-rigid cable.
The measurement model not only takes into account unequal uncertain-
ties for both cables of the VNA, but as there are separate components in
β′ for each measurement, one can attribute higher uncertainties to mea-
surements, which are subject to more cable movement due to standards
being much longer or shorter than the DUT.

4.5 Theoretical solution of the calibration problem

As described in the previous sections, VNA measurement and calibration
is understood as a statistical process. The underlying physics of this
process is formally characterized by the pdf p(β′, ς ′|s′) and the function
g′ given in (4.6). Based on these two characteristics one can develop the
new pdf p(v, s′u|r′, s′d) for VNA parameters v or s′u under the condition of
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given r′, s′d. This pdf finally dictates the mean value of v and/or s′u, i.e.,
the solution of the calibration problem.

A first substantial step towards the solution is to compute p(r′|v, s′u, s′d).
The pdf to observe r′ under the condition of given v and s′ is obtained
by integrating p(β′, ς ′|s′) over the subset A of Uv,s′ .

A = {(β′, ς ′) : g′(v, s′d, s
′

u, β′, ς ′) = r′} (4.8)

p(r′|vs′u, s′d) =

∫

A

p(β′, ς ′|s′) dA (4.9)

The subset A is defined as all pairs (β′, ς ′) which fulfill g′ for one fixed
r′, v, s′. In other words, A contains all tuples (β′, ς ′) which can explain the
observed raw S-parameters r′ if a VNA v with standards s′ is used. The
dimension of A equals the number of variables in β′ which is lower than
the dimension of Uv,s′ . The already-mentioned integral can be extended
to compute the pdf p(r′|s′d) of reading raw S-parameters r′ on a VNA
measuring the standards s′d by

p(r′|s′d) =

∫

Cn

∫

Cq

p(r′|v, s′u, s′d) p(v, s′u) dv ds′u

=

∫

Cn

∫

Cq

∫

A

p(β′, ς ′|s′) dA p(v, s′u) dv ds′u. (4.10)

As already mentioned after (4.7), q denotes the number of unknown pa-
rameters in the standards, i.e., q = dim(s′u). Note that the exact knowl-
edge of the pdf p(v, s′u) is not very critical because one wants to determine
v, s′u by calibration and not by prior knowledge. Depending on what is
known about v and s′u, a rather wide, e.g., a uniform distribution can be
chosen, which then makes the infinite range of integration Cn+q to become
finite. Now, the conditional pdf of observing v and s′u under the condition
r′ is given by Bayes law as

p(v, s′u|r′, s′d) =
p(r′|v, s′u, s′d) p(v, s′u)

p(r′|s′d)
. (4.11)

The process of finding the values v and s′u from the pdf given in eq. (4.11)
is called estimation and is denoted by the estimator

E(r′, s′d) = (v̄, s̄′u). (4.12)
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Thereby v̄ and s̄′u are estimates of the VNA parameters v and of the
parameters s′u of the standards respectively.

Criteria like unbiasedness and minimum variance can be applied to rate
an estimator, see [45]. As shown in Appendix D, a minimum variance
unbiased estimator for the calibration problem is

E(r′, s′d) =

∫

Cn+q

(v, s′u) p(v, s′u|r′, s′d) dv ds′u. (4.13)

Substituting (4.9), (4.10) and (4.11) into (4.13) yields

E(r′, s′d) =

∫

Cn+q

(v, s′u)
∫

A

p(β′, ς ′|s′) dA p(v, s′u) dv ds′u
∫

Cn+q

∫

A

p(β′, ς ′|s′) dA p(v, s′u) dv ds′u
. (4.14)

In the case of l standards, n complex VNA model parameters and q com-
plex standard parameters the outer integrals in (4.14) show n+q complex
dimensions. The integrands differ only by the factor (v, s′u) but consist of
a further integral with ln complex dimensions. Note that the inner range
of integration A depends on the outer integration variables v and s′u. Nu-
merically, the evaluation of numerator and denominator are performed
simultaneously.

For instance, a LRL calibration with four lines and one reflect stan-
dard (l = 5) with unknown reflection coefficient and propagation constant
(q = 2) using an 8-term VNA model (n = 7) requires the evaluation of a
complex ln + n + q = 44-dimensional integral. This can be a very tedious
task mainly due to the complicated shape of A but also because the inte-
grand takes appreciable values only in a very small region. In such cases
appropriate numerical integration techniques first search the global maxi-
mum of the integrand and then use some approximations on the integrand
to obtain the final result. Further details on how to compute points in
A and appropriate numerical integration techniques are given in section
4.6.2.

4.6 Computation of the estimator

The evaluation of the estimator (4.14) is not straight forward. Hurdles
include the very narrow pdf p(β′, ς ′|s′) and the shape of the inner inte-
gration range A which varies with v and s′u. The following describes how
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Start

Find Maximum
vM , s′uM , β′

M , ς ′M of p(β′, ς ′|s′)

Generate Samples
vi, s′ui, pi around vM , s′uM , β′

M , ς ′M

Compute

(v, su) =
∑

(vi,sui)pi
∑

pi

Stop

Figure 4.7: Flowchart for the computation of the estimator. The first step of the
algorithm is to find the solution of the calibration problem which is the most
probable. The following step is to generate the samples for the Monte-Carlo
integration which is executed in the last step.

these obstacles are overcome. First, a combination of optimization tech-
niques is used to find the maximum of the inner integrand. Subsequently,
the integrals are computed with Monte-Carlo integration. The flowchart
of the complete algorithm is given in Fig. 4.7.

4.6.1 Finding the solution with maximum probability

The first step in the flowchart in Fig. 4.7 is finding the maximum of
p(β′, ς ′|s′). The crucial points are that this maximum must be found on
A only and that the shape of A varies with v and s′. In a more formal
way, one can describe the desired maximum by

max
v,s′

u,β′,ς′
[p(β′, ς ′|s′) : g′(v, s′u, s′d, β

′, ς ′) = r′] . (4.15)

From (4.15) it is obvious that for a given r′ and s′d one must find not
only some dedicated values β′

M and ς ′M being associated with the desired
maximum of p(β′, ς ′|s′), but also the values vM and s′uM . There is no
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need to search in the full space spanned by v, s′u, β′, ς ′ but only in the
subset v, s′u, β′. The reason for this is the function g′. All variables in ς ′

can be directly computed from any given v, s′u, β′ by (4.5).
Due to the non linear character of the underlying equations and the

constraints of the components of ς ′ (passive standards) it is still difficult
to find this maximum. In general, it can be stated that the high dimen-
sional and non linear optimization problem has several local maxima, i.e.,
it is not convex. This means that local optimizers which can reliably solve
only convex problems may not be suitable [46]. However, if the objective
function — pdf p(β′, ς ′|s′) — was continuously differentiable, a local op-
timizer fed with a good starting point would work fine [38]. Here, the
quadratic local optimizer lsqnonlin2 from the MatlabTM optimization
toolbox is used. A good starting point can be obtained by performing a
calibration which is not over-determined, see [34] for details. However,
here the objective function is not continuous due to the passivity con-
straints on s̃′ = s′ + ς ′. The resulting constraints on ς ′ which truncate
the underlying multivariate Gaussian pdf p0(β′, ς ′|s′) can be treated by
the barrier algorithm [47]. The essential idea here is to “continuously
truncate” p0(β′, ς ′|s′).

Let s̃i = si + ςi be the i-th parameter in the list s̃′. If |s̃i| ≤ 1 holds,
then the difference δi = (1 − |si + ςi|) −

∣

∣1 − |si + ςi|
∣

∣ is zero and the
modified objective function

f(σc, β
′, ς ′) = p0(β′, ς ′|s′)·e−

δ2
i

2σ2
c (4.16)

equals the original objective function. Wherever |si + ςi| > 1 holds the
original objective function is pushed down. The parameter σc determines
the slope beyond the border. For very small values of σc, the function
f(σc, β

′, ς ′) approaches a (not yet normalized) pdf which is truncated by
the restriction |s̃i| ≤ 1. More restrictions of the same kind are taken into
account by defining the vector d(s′, ς ′) = (δ1, δ2, . . .) and using the square
of its Euclidian norm ‖d‖2 in the exponent in (4.16).

Since a local optimizer works more efficiently for smoother objective
functions and better starting points the barrier algorithm iteratively de-
creases the value of σc. Starting with the very moderate value σc = 1 one
defines σc(µ) = 10−µ and lets µ run from zero to 10 in integer steps.

2Matlab Version 7.0.4.365 SP2
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Unfortunately for noisy data sets a good starting point is not always
available. Therefore another measure to overcome such difficulties is pro-
posed. It consists of constraining the VNA parameters v and β′ to phys-
ically plausible values. These are values which allow to invert the model
of the VNA with good numerical accuracy.

The VNA parameters v and β′ describe the relation between the DUT
S-parameters and the raw VNA results (Fig. 4.4). Describing this rela-
tionship by a transmission matrix T(v, β′) it follows that the matrix T

must be invertible. If T is not invertible the VNA is broken. The recipro-
cal condition number κ(T) should not be smaller than χ = 0.0001 because
for a VNA which is calibrated with high impedance (10 kΩ) standards one
typically obtains κ(T) = 0.001. The factor

k(T, σκ) = e
−

(κ(T)−χ−|κ(T)−χ|)2

2σ2
κ (4.17)

acts as an additional barrier which prevents the local optimizer from con-
verging towards “solutions” with low physical plausibility. The factor σκ

is experimentally set to σκ = 10−5.
Combining this idea with the barrier algorithm yields the objective

function

f(T, µ, β′, s′u) = p0(β′, ς ′|s′)·e−
‖d‖2

2·10−2µ ·k(T, σκ) (4.18)

The list of the input variables for the objective function contains only
the variables which vary independently during the search. The complete
algorithm for the search of the maximum of p(β′, ς ′|s′) is shown in Fig. 4.8.

Note that this maximum is related to a certain location vM , s′uM , β′

M

in the search space and there is an associated value ς ′M . Other values
for (v, s′u) are also possible but have a lower probability density. Due
to the truncations in p(β′, ς ′|s′) the values (vM , s′uM ) represent not nec-
essarily the best solution of the calibration problem but only the most
probable one. More appropriate is the expectation of (v, s′u) which re-
sults from (4.14). The computation of the high dimensional integrals in
(4.14) requires a Monte-Carlo integration, which is discussed in the next
subsection.

4.6.2 Monte-Carlo integration

A typical VNA problem results in an integral with 44 complex dimensions.
A rectangular grid with N points in each dimension ends up in N88 real
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Start Find Maximum

Find Initial
Solution β′

b = 0, vb, s′ub

µ := 0

Find Optimum of f(T, µ, β′, s′u)
starting from β′

b, vb, s′ub

µ := µ + 1

µ = 10 ?

End Find Maximum

Yes
No

Figure 4.8: A detailed representation of the first step in Fig. 4.7. The first
step of the algorithm for finding the maximum (4.15) consists of finding an
initial solution vb, s

′

ub as specified in [34]. The uncertainty variables β′ can be
guessed initially as zero β′

b = 0 for this initial solution. The following steps
describe the barrier algorithm for the approximation of p(β′, ς ′|s′).

values — obviously far beyond any brute force integration technique. A
practical way out is a Monte-Carlo integration.

Considering the right side of (4.14) it follows that the integrals in the
numerator and denominator contain the pdfs p(β′, ς ′|s′) and p(v, s′u). The
numerator contains additionally the factor (v, s′u). Note that the (v, s′u)-
dependency of the full integrand holds through A’s dependency on those
variables. The factor p(v, s′u) is constant and needs no further discussion
because it cancels out. The multiple integrals over Cn+q and A can be
approximated by a sum. Let pi be a short notation for p(β′

i, ς
′

i|s′) at the



84 4 CALIBRATION ALGORITHMS

location vi, s
′

ui, β
′

i, ς
′

i. Then the expression

EN (r′, s′d) =

∑N
i=1(vi, s

′

ui)pi
∑N

i=1 pi

(4.19)

is an approximation of E(r′, s′d) in (4.14) if the locations of pi are chosen
appropriately. In this context an appropriate choice means that the inte-
gration range is covered with uniformly distributed locations vi, s

′

ui, β
′

i, ς
′

i.
Several things have to be considered to find such a set of locations:

1) In principle, the integration range is unbounded with respect to v, β′

and partially bounded with respect to s′u, ς ′ (passivity restrictions).
A practical and quite restrictive bound is given through p(β′, ς ′|s′)
which has significant magnitude only for small values of β′, ς ′. The
respective range is predefined by the variances of those variables.

2) The variances of ς ′ can be significantly larger than the variances of
β′.

3) The domain A — its dimension equals the dimension of β′ — de-
pends on the fix raw VNA values r′ and the variables v, s′u. It is
defined by g′ and changes when v, s′u vary.

4) Given any ς ′ which is probable according to p(β′, ς ′|s′) the function
g′ usually delivers β′-values far out of the range defined in 2).

5) The function g′ responds to non-Gaussian distributed input parame-
ters with Gaussian distributed output parameters due to the central
limit theorem[41].

In spite of these difficulties, the algorithm (Fig. 4.9) finds a set of loca-
tions vi, s

′

ui, β
′

i, ς
′

i suitable for a Monte-Carlo integration using the sim-
ple sum (4.19). The most important point is that all locations are ex-
pected to be within close vicinity of the already known location LM =
(vM , s′uM , β′

M , ς ′M ) associated to the global maximum of p(β′, ς ′|s′). Since
this domain must be searched for, the algorithm starts with some random
locations close to LM and controls the allowed distance from LM by the
restriction parameter a. With each iteration the restriction parameter is
doubled or halved depending on the actual and previous values of the pdf
p(β′, ς ′|s′) and the value of the mode variable. If the mode variable is set



4.6 COMPUTATION OF THE ESTIMATOR 85

Start Monte-Carlo

a := 0.125; i := 0; mode := fwd

i := i + 1

A) Generate ς ′i according to p(β′, ς ′|s′)

B) ς ′i := ς ′i + a(ς ′i − ς ′M )

C) Optimize vi, sui, β′

i for maximal pt

i > 2 ?

pi ≤ pi−1 &&
pi−1 ≤ pi−2 ?

mode := rev
a := a/2

pi < 10−4 ?
mode := fwd

a := 2a

mode = fwd? a := 2a

a := a/2

i > 100 ?

End Monte-Carlo

Yes

Yes

No

Yes

No

Yes

No

No

No
Yes

Figure 4.9: A detailed description of the second step in Fig. 4.7. The algorithm
produces samples ς ′i around ς ′M with varying restriction a. Note that a can
take values larger than 1. The ς ′i are combined with vi, s

′

ui, β
′

i which satisfy
function g′ and yield maximum probability density pi.
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to fwd, the next location will be closer to LM . For the rev state the next
location will be further away from LM .

The core procedure of the random choice starts with a random set ςi
and then finds suitable values vi, s

′

ui, β
′

i. The procedure is performed in
three steps:
A) Random choice of ς ′i
The sample ς ′i is chosen according to the truncated pdf p(β′, ς ′|s′). The
truncation is easily taken into account by rejection sampling, [48]. Start-
ing with ςi prevents problems due to 5) and all restrictions due to 1) are
taken into account with this step.
B) Move ς ′i toward ς ′M
According to the actual restriction parameter a the sample is moved as
ς ′i → ς ′i − a(ς ′i − ς ′M ). This step (partly) avoids cases described in 5).
C) Find suitable vi, s

′

ui, β
′

i

Since the dimension of β′ is higher than that of ς ′ only part of the values
β′

i can be obtained from ςi. Function g′ gives the respective relation. The
remaining values in βi as well as vi, s

′

ui are obtained by a constrained
optimization process such that maximum pi results. The optimization
uses again the local optimizer lsqnonlin from Matlab and is similar to
the process in the previous section. Differences include the starting value
— here a random ς ′i is used while the rest stems from LM — and the
used constraints. While the complex constraints for finding LM are im-
plemented with the barrier algorithm, the constraint mechanism included
in lsqnonlin is used for the rather simple constraints which apply to su

and ς ′.

The samples vi, s
′

ui, produced with this algorithm, are equal up to the
n-th digit where n = 2 . . . 6 in the examples given in the next section. The
estimation (4.19) yields n + 1 stable digits after N = 100 samples. The
Monte-Carlo algorithm uses only N = 100 samples because of its 1/

√
N

convergence. Further gains in accuracy would be very expensive in terms
of computation time. The sequence of locations does not exactly show
uniform distribution in the integration range. Nonetheless the practical
tests described in the next sections indicate that the estimation error due
to non-uniformly distributed locations must be small.
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4.7 Test with synthetic data set

In order to make a statement about the quality of a calibration algorithm,
two things are required. First, one must quantify how well the calibra-
tion algorithm works and second the algorithm must be compared against
the performance of other algorithms. A LRL calibration is used for this
comparison. All information which is usually collected during a real LRL
calibration is artificially generated and then stored in a synthetic data set
which contains blocks of 1000 calibrations. Each of them is characterized
by three criteria: the variance of the standards, the frequency and the
impedance level (either a 50 Ω calibration or a 10 kΩ calibration). Such
parameterized data blocks are calibrated with four different calibration al-
gorithms: Plain LRL, Multical Clone, Statistical Clone and Monte-Carlo.
The results of each calibration are statistically varying v̄ values. They are
compared against the reference value v which was used to generate the
synthetic data set. The mean squared differences are used to classify the
different algorithms.

4.7.1 Setting up the synthetic data set

The LRL calibration is chosen as an example because it is regarded as
the most accurate calibration in many cases. The synthetic data set of
the LRL calibration contains information about the standards and the
raw measurement results r′. The standards are four lines (0 mm, 42 mm,
49 mm and 125 mm) and two shorts. The line lengths are designed for a
frequency range of f = 0.2 . . .18 GHz. Further definitions of the standards
are:

• Lines are not reflective.

• Lines are lossless.

• All lines have the same phase constant.

• Shorts do not allow for transmission.

• Both shorts have the same reflection coefficient.

Utilizing this information the calibration algorithm will estimate v from
the measured raw data r′.
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For generating each r, a whole chain of computations must be per-
formed. First, one defines the ideal S-parameters s, then they are per-
turbed to obtain s + ς. Next, one defines v and adds a perturbation to
achieve v + β. Finally, r can be computed with the perturbed standard
S-parameters s + ς and the perturbed error terms v + β.

The start of the chain of computations is to compute the ideal S-
parameters of the lossless perfectly matched lines and to set the ideal
S-parameter of the short to Γ = −1. Then a set of complex Gaussian ran-
dom variables with zero mean value and variance σ2

ς′ is generated to ac-
count for ς ′. These random variables are added to the ideal S-parameters.
Whenever the absolute value of a resulting S-parameter is larger than
one, a new random number is generated for the respective S-parameter.
This process, called rejection sampling, is repeated until all amplitudes of
S-parameters are less than one. For an example see S12 in Fig. 4.6. The
resulting S-parameters represent s + ς. This procedure does not ensure
strict passivity of the standards but it is very simple and yields distribu-
tions which are similar to S-parameter distributions with strict passivity,
[42]. A direct consequence of the given procedure is that the reflection co-
efficients of the shorts and the transmission coefficients of the lines follow
a non-Gaussian distribution.

The next step is to define and perturb the measurement function param-
eters v. Two different definitions of v will be used to show the influence
of 50 Ω standards and 10 kΩ standards on the calibration accuracy. To
obtain v + β, a complex random variable β which is Gaussian in all com-
ponents with zero mean value and variance σ2

β′ is added to the ideal error
box parameters v. These error box parameters are called perturbed error
box parameters.

Finally, the measurement results r′ are computed. For generating r,
the variance of the error box parameters is set to σ2

β′ = 5 × 10−7 and

the variance of the standards is set to σ2
ς′ = [10−3, 10−5, 10−7]. Further

parameters for generating the raw S-parameters r′ include the frequency
f = [3.45, 9.15] GHz and the choice between 50 Ω and 10 kΩ standards.
For the 50 Ω case, the magnitudes of the transmission coefficients are set
to approximately 1 and the source match and directivity terms are set to
magnitudes of approximately 0.1, see Fig. 4.10. For the 10 kΩ case, the
directivity and source match terms are set to magnitudes of 0.99 and the
transmission terms to 0.1. Thousand calibrations are generated for each
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Figure 4.10: 8-Term error network representing the VNA and a standard. The
error boxes are constructed from transmission terms v3, v4, v6, directivity
terms v1, v7 and source match terms v2, v5. One branch of the network
describing the VNA is set to 1 without loss of generality because S-parameters
are ratios of wave quantities. The S-parameters of the standard are called
sn.

setting, resulting in a total of 2 impedances×2 frequencies×3 variances×
1000 calibrations = 12,000 calibrations.

This data set contains calibration scenarios where the accuracy of the
standards is better than the precision of the VNA but also cases where the
opposite is true. With this variety it can be assessed how well errors in the
VNA and errors in the standards are modeled. The data set contains sce-
narios with 50 Ω and 10 kΩ standards. The 10 kΩ case produces strongly
non-Gaussian distributed measured raw S-parameters, whereas the 50 Ω
case produces nearly Gaussian distributed measured raw S-parameters.
These parts of the data set are intended to test the dependence of the cal-
ibration results on the shape of the pdf of the measured raw S-parameters.
The last parameter to be discussed is the frequency. The expected level
of error for the f = 9.15 GHz calibration is lower than for f = 3.45 GHz
due to the resulting phase difference of the lines, see [49]. However, this
is only valid for the 50 Ω calibration because [49] assumes small source
match terms to arrive at this result.

Now the raw S-parameters r′, the pdf p(β′, ς ′|s′) and information about
the standards are available. With this one obtains estimates of the cali-
bration coefficients v and the standard parameters s′u (phase constant and
reflection coefficient).

4.7.2 Calibration algorithms and results

In the following the algorithms Plain LRL, Multical Clone and Statistical
Clone are used to benchmark the Monte-Carlo algorithm because they are



90 4 CALIBRATION ALGORITHMS

probably the most popular calibration algorithms for the LRL problem.
The Plain LRL is a very basic algorithm which is described in [34]. This
algorithm does not use any pdf but assumes the VNA and the standards
to be flawless.

The Multical Clone algorithm is based on [12] and [13]. It assumes
Gaussian distributed errors in the standards but no errors in the VNA.
The variances of the errors in the standards do not have to be supplied
to the algorithm. They are set to a fixed value by the algorithm.

The Statistical Clone algorithm is based on the equations in [38]. This
algorithm assumes errors in the standards and in the scale reading. For
calibration, the covariance matrix of the errors in the standards and of
the errors in the measured raw S-parameters are required. It is trivial to
determine the covariance matrix for the standards because p(β′, ς ′|s′) is
known. The covariance matrix for the raw S-parameters r′ is constructed
from the raw S-parameters of a special synthetic data set with unper-
turbed standards but with perturbed VNA parameters.

All described calibration algorithms are used to estimate v. Tables 4.1
and 4.2 show the mean squared error of the estimate v̄ with respect to
the v which were used for the generation of the data set. Each entry
in the tables represents a block of 1000 calibrations and is thus itself a
realization of a random variable. The variances of these random variables
are in the 10 kΩ Plain LRL cases that large that no convergence for more
accurate standards is visible. In the other cases, the variance of the results
is much smaller. Comparing the mean squared errors for all algorithms
and calibration scenarios shows that the Monte-Carlo algorithm always
performs better than all other algorithms. The reason for this is that the
Monte-Carlo algorithm assumes the errors to be in the standards and in
the VNA itself. In contrast the Plain LRL algorithm does not assume any
errors and the Multical Clone assumes errors only in the standards. The
Statistical Clone algorithm assumes errors in the standards and in the
measured raw S-parameters. This is sufficient for 50 Ω calibrations but
for non-standard applications like the 10 kΩ calibration the advantages of
the new model of the calibration process become evident.

The very robust convergence is another advantage of the new algorithm.
The No Convergence entries in the tables signify cases where the respec-
tive algorithm did not converge or produced unrealistic errors. While the
Multical Clone algorithm produced huge errors in all of the 10 kΩ cases,
the Statistical Clone algorithm failed to converge in only one 10 kΩ case.
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Table 4.1: Mean squared error of v̄ for the 50 Ω case

σ2
ς′ = 10−3 σ2

ς′ = 10−5 σ2
ς′ = 10−7

Plain LRL
f = 3.45 GHz 1.242 × 10−1 9.642 × 10−4 1.126× 10−5

Multical Clone
f = 3.45 GHz 9.818 × 10−4 1.166 × 10−5 1.623× 10−6

Statistical Clone
f = 3.45 GHz 9.842 × 10−4 1.055 × 10−5 1.302× 10−6

Monte-Carlo
f = 3.45 GHz 9.706 × 10−4 1.008 × 10−5 1.280× 10−6

Plain LRL
f = 9.15 GHz 9.483 × 10−2 6.649 × 10−6 9.934× 10−7

Multical Clone
f = 9.15 GHz 7.242 × 10−4 8.693 × 10−6 1.309× 10−6

Statistical Clone
f = 9.15 GHz 3.957 × 10−4 4.196 × 10−6 5.971× 10−7

Monte-Carlo
f = 9.15 GHz 3.734 × 10−4 3.855 × 10−6 5.847× 10−7

During a closer examination of this last case it was found that supplying
the correct solution of the calibration problem as a starting point to the
Statistical Clone did not solve the problem. For this case the Statisti-
cal Clone algorithm does not converge because its error model does not
produce a local minimum.

It must be mentioned that robust convergence and better results require
more computation time. For calibration the Matlab implementation of
the Monte-Carlo algorithm needs half an hour to compute 1000 frequency
points on a single core AMD Opteron 2.2 GHz with 3 GB RAM. The
other in-house algorithms need less than five minutes for this task. Similar
values are reported in [39].
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Table 4.2: Mean Squared Error of v̄ for the 10 kΩ case

σ2
ς′ = 10−3 σ2

ς′ = 10−5 σ2
ς′ = 10−7

Plain LRL
f = 3.45 GHz 3.292 × 10−3 6.497 × 10−3 9.099 × 10−3

Multical Clone
f = 3.45 GHz

No
Convergence

No
Convergence

No
Convergence

Statistical Clone
f = 3.45 GHz 1.436 × 10−2 4.591 × 10−3 7.924 × 10−4

Monte-Carlo
f = 3.45 GHz 3.094 × 10−3 1.824 × 10−4 5.127 × 10−5

Plain LRL
f = 9.15 GHz 8.986 × 10−3 7.131 × 10−3 1.133 × 10−2

Multical Clone
f = 9.15 GHz

No
Convergence

No
Convergence

No
Convergence

Statistical Clone
f = 9.15 GHz

No
Convergence 6.404 × 10−4 1.755 × 10−4

Monte-Carlo
f = 9.15 GHz 1.778 × 10−3 3.936 × 10−4 2.904 × 10−5

4.8 Tests with real data set

After testing the calibration algorithms with the synthetic data set they
are applied to a real LRL calibration problem. First, the associated real
data set is compiled. The required probability density functions have to be
constructed from uncertainty computations of the standards and estimates
of the VNA uncertainties. Then the different calibration algorithms are
applied to the real data set. The accuracy of the algorithms can not be
computed by the resulting estimates v̄ because the true v is not known.
Here the only way to judge the quality of the different algorithms is to
compare how well the frequency response of a well known DUT meets the
expectations.
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4.8.1 Real data set

As before, the properties of the standards are first defined. A 50 Ω N-
type calibration kit with two phase matched offset shorts and four lines
(0 mm, 41.6632 mm, 48.6035 mm, 124.8755 mm) is used. The kit can be
used for calibrations from f = 0.2 . . . 18 GHz. Further information about
the standards are:

• Lines are not reflective.

• Lines are lossy.

• All lines have the same phase constant.

• Shorts do not allow for transmission.

• Both shorts have the same reflection coefficient.

Note that losses in the lines are now considered.
Unlike for the synthetic data set the measured raw data r′ is obtained

from real measurements. This is the reason why one has to construct the
probability density functions for the different calibration algorithms.

The Statistical Clone requires the covariances of the S-parameters, de-
scribing the standards, and of the measured raw S-parameters. The co-
variance matrix for the S-parameters of the standards can be computed
from connector repeatability, dimensional uncertainties, conductivity un-
certainties and uncertainties in the computational process yielding the
S-parameters of the standard. The covariance matrix of the measured
raw S-parameters is usually obtained by repeating the anticipated ca-
ble movements with attached standards. This method requires standards
which are much more stable than the measurement system. The resulting
variations in the raw S-parameters give the estimated variance of the raw
S-parameters.

Other than the Statistical Clone algorithm, the Monte-Carlo algorithm
requires the pdf p(β′, ς ′|s′). For the real data set, the same type of pdf
is used as for the synthetic data set. The independence of β′ from ς ′ and
s′ is used to derive p(β′, ς ′|s′) = p(β′)p(ς ′|s′), see Fig. 4. The probability
density function p(ς ′|s′) is found by a computational process similar to
the one which resulted in the covariance matrix of the standards for the
Statistical Clone algorithm. There are two ways to determine p(β′). The
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first method applies to cases where the element of the VNA which causes
the largest part of the uncertainties is already characterized. This will
most often be a cable which introduces transmission phase uncertainty.
Such uncertainties can be directly incorporated into p(β′). The second
method is iterative. It requires that the stability of the standards exceeds
the stability of the VNA largely. The first step in this procedure is to
perform several measurements of each calibration standard. Between the
measurements the cables are moved as for the normal measurements but
without disconnecting the standard. Second, one computes β′ for each set
of measured raw S-parameters with ς ′ = 0 and an arbitrarily given p(β′).
The differences between the resulting β′ should equal differences predicted
by p(β′). Now the function p(β′) can be modified until the differences of
the resulting β′ match the prediction of p(β′). In a final step, p(ς ′|s′) and
p(β′) are multiplied.

The Plain LRL algorithm and Multical Clone do not require probability
density functions or similar information. The other two algorithms re-
quire covariance matrices or a probability density function. It is intended
to compare the results of the different algorithms. Thus one defines a
probability density function like for the synthetic data set and derives the
covariance matrices from this function, see section 4.7.2. The variances
of the original probability density function are set to σ2

β′ = 5 × 10−7 and

σ2
ς′ = 10−6. This way of generating covariance matrices and probability

density function guarantees comparability of results.

4.8.2 Results of real data set

Figure 4.11 shows the measured reflection coefficients of the offset short
which result from four calibration algorithms. The expected quasi expo-
nential decay for the offset short is best realized with the Statistical Clone
and the Monte-Carlo algorithm. The results of the Plain LRL algorithm
suffer from switching between different lines, whereas the Multical Clone
results show the effects of a badly calibrated tracking coefficient. The
spikes on the traces are due to sampler bounce on a HP 8510 system.

Sampler bounce produces measured raw reflection coefficients which are
larger in magnitude than expected. This is an error of the VNA and oc-
curs only with highly reflective DUTs. Sampler bounce enters into the
final measurement result in a multi stage process. First, the standards
are measured. The measured raw S-parameters of the short are affected
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Figure 4.11: S11 magnitudes of the short after de-embedding with different
calibration algorithms. The raw data is measured with a HP 8510 system.
Spikes are due to sampler bounce in the VNA test set. The Plain LRL result
shows the artifacts of changing pairs of lines. The Multical Clone results suffer
from a tracking problem. The Statistical Clone and Monte-Carlo algorithm
show rather similar realizations of the expected quasi exponential decay.

by sampler bounce. Next, the calibration algorithm computes the v̄ from
the erroneous r′ and the specifications of the standards. As a consequence
the v̄ are incorrect as well. If they are used to de-embed the S-parameters
of a DUT, which is not affected by sampler bounce, one should still see the
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Figure 4.12: S21 magnitude of the 125 mm line after de-embedding with different
calibration algorithms. The measurements are made with a HP 8510 system.
Like in Fig. 4.11 the Plain LRL results show the switching between the lines
and the tracking problem of Multical Clone is visible as well. Remaining
spikes in the Monte-Carlo trace are a result of passivity constraints in the
algorithm and sampler bounce in the VNA.

effects of sampler bounce during calibration. Figure 4.12 shows the trans-
mission coefficient magnitude of the 125 mm line. The sampler bounce
effects on the trace of Monte-Carlo are visible, whereas other algorithms
do not show these artifacts. The reason for this is that the Monte-Carlo
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algorithm assumes the offset shorts to be passive whereas the other al-
gorithms do not. The Monte-Carlo and the Statistical Clone results are
very close to the expected quasi exponential decay, whereas the Multiline
Clone result suffers again from the tracking problem. The Plain LRL
algorithm result shows again the line switching artifacts.
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5 Calibration for Snap-on Connectors

Abstract—The introductory section describes the problems which arise during cal-

ibration with snap-on connectors. Next, these problems are analyzed in detail with a

Monte Carlo simulation (MCS). The results of this MCS indicate that VNAs are best

calibrated with metrology grade connectors and in a second step a pre-characterized

adapter should be used to measure DUTs with industry grade connectors. In the

following two adapter characterization techniques are presented in detail. The chap-

ter ends with a comparison of both techniques.

5.1 Introduction

Practical LRL calibration tests with standards which are equipped with
snap-on connectors of the MMPX type showed highly random calibration
results. The reason for this failure lies in the construction of snap-on
connectors.

The snap-on mechanism presses the female and male parts of the con-
nector against each other. Obviously the forces of this mechanism are
much smaller than the forces which can be exerted with a coupling nut.
Thus snap-on connectors show a different mechanical and electrical length
at each connection. This variability in length caused the failure of the LRL
calibration.

The sensitivity of other calibration methods like short open load thru
(SOLT) on the length variability can be assessed with a Monte Carlo sim-
ulation (MCS). The advantage of a MCS is that the calibration process
can be modeled exactly. Disadvantages of the MCS are that it is computa-
tionally expensive and that there is in some cases no convergence. An ex-
tensive MCS of SOLT and LRL calibrations with snap-on connectors and
with 1.85 mm connectors and subsequent adapter de-embedding showed
that the best solution for snap-on connector calibration is a 1.85 mm con-
nector calibration with a subsequent adapter de-embedding.

The adapter de-embedding is the critical point in the selected calibra-
tion method because the adapter has to be known for de-embedding. For

99
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adapter characterization two new methods are tested. The short open
thru (SOT) method uses a short, an open and a thru to characterize the
adapters, whereas the other method employs bead-less adapters which are
characterized by electromagnetic field simulation.

5.2 MCS of calibration methods

As already stated in the previous chapter, the uncertainty of a VNA mea-
surement is a consequence of the uncertainties both of calibration stan-
dards and the VNA. The way how the latter uncertainties move forward
to the final measurement uncertainties is a complicated multi-stage pro-
cess. The first stage (calibration of the VNA) essentially results in the
error box terms. Here the uncertainties of the standards and of the VNA
mix and result in uncertain but correlated error box terms. In the second
stage (measurement of DUT), the uncertain error box terms are used to
calculate the S-parameters of the DUT. In this stage the uncertainties of
the error box terms and of the DUT mix up and form the uncertainties of
the measurement result. In particular the correlation of error box terms
amongst each other poses a challenge to the statistical modeling of the
measurement process. Note that the uncertainty distribution functions
(with assumed parameters such as shape and variance) of the VNA error
terms and the S-parameters of the standards mainly determine the final
measurement uncertainties.

The guide to the expression of uncertainty in measurement (GUM), [50],
defines a simplification of uncertainty computation. It consists in using
the Taylor expansion of the equation which defines the measurand. This
Taylor expansion is restricted to the linear terms of the involved random
variables. The distribution of the measurement result is then computed
by using the covariance matrix of the involved random variables for sum-
mation and quadrature, see [17]. Such an approach does not take into
account the nonlinearities of the calibration and de-embedding equations.

The MCS presented here concentrates on the influence of non-ideal
connectors on calibration accuracy. The connectors are modeled with
random transmission phase and random reflection coefficients. Essentially
the whole calibration and subsequent measurement process are simulated
a couple of ten thousand times by starting with random input values for
the standards. The resulting distribution of the S-parameters of a given
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Outer
conductor

Inner
Conductor

Lm+LMMPX

Lm+LMMPX

Figure 5.1: MMPX interface with random gap length Lµ + LMMPX . LMMPX

represents the varying part of the gap length, whereas Lµ represents the fixed
length of the gap.

DUT is then analyzed using a statistics software.
This approach was particularly useful for studying different calibration

techniques in conjunction with snap-on connectors which show large phase
and small reflection coefficient variances. The MCS makes it possible to
clearly distinguish between effects of transmission phase deviations and
reflection coefficient deviations.

5.2.1 Uncertainties of the connectors

The snap-on connectors (MMPX connectors) investigated in this study,
have shown a maximum measured transmission phase deviation of ±1.5◦

at 65 GHz for the transmission term. The phase deviations stem from the
variable gap length in the transmission path, see Fig. 5.1. The maxi-
mum measured reflection term uncertainty was −30 dB. In contrast the
1.85 mm connectors are more repeatable. They did not show significant
phase deviations for the transmission term. The random part of their
reflection coefficient varies within much lower limits which depend on the
manufacturer and the present sample. One can surely assume that the
random reflection coefficient is below −40 dB. These figures were derived
from measurements of repeated connections.

For the snap-on connector as well as for the 1.85 mm connector, it is
assumed that the phase of the transmission term and the complex reflec-
tion term are Gaussian distributed. Thus the 95 percent quantiles for
the complex reflection term and for phase deviations were set to the mea-
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sured maximum values. The measured transmission phase deviations of
the snap-on connector are modeled by a random length variable LMMPX .
The statistical properties of this variable can be deduced from the trans-
mission term phase measurements as

LMMPX ∼ N
(

0, 9.62714 · 10−11
)

. (5.1)

N(µ, σ2) denotes a Gaussian distribution with mean µ and variance σ2.
As already mentioned the distribution of the length variable LMMPX

is chosen such that in 95 percent of the connections the length deviation
from the mean transmission path length produces phase errors of less than
±1.5◦ at 65 GHz. Axial offsets and various other effects cause reflection
coefficient deviations. A complex random variable, RMMPX , represents
these complex deviations from the mean reflection coefficient

Re {RMMPX} ∼ N
(

0, 2.60318 · 10−4
)

(5.2)

Im {RMMPX} ∼ N
(

0, 2.60318 · 10−4
)

. (5.3)

As for LMMPX the variable RMMPX is chosen such that 95 percent of
the connections show a deviation of less than −30 dB from the mean
return loss. Both LMMPX and RMMPX describe deviations from a mean
connection.

For 1.85 mm connectors the phenomenon of varying transmission length
is nearly inexistent due to the coupling nut, thus

L185 = 0. (5.4)

The random reflection coefficient of the 1.85 mm connector is assumed to
be below −40 dB. The resulting random variable is

Re {R185} ∼ N
(

0, 2.60318 · 10−5
)

(5.5)

Im {R185} ∼ N
(

0, 2.60318 · 10−5
)

. (5.6)

5.2.2 Uncertainties of standards

The previously defined random variables can be used to specify the ran-
dom S-parameters of calibration standards. Hereby the standards are
assumed to be perfect but equipped with an imperfect connector. The
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following equations hold for snap-on connector standards as well as for
1.85 mm standards:

SS =









−e−2jβLSOLT
1s 0

0 −e−2jβLSOLT
2s









(5.7)

SO =









e−2jβLSOLT
1o 0

0 e−2jβLSOLT
2o









(5.8)

SL =









RSOLT
11l 0

0 RSOLT
22l









(5.9)

ST =









RSOLT
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∣

∣
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e−jβLSOLT

1t RSOLT
22t









.

(5.10)

Here, the random variables R and L are not written with the connector
type as an index. Instead, they are indexed with the name of the standard
to which they belong, e.g., LSOLT

1o is the random length variable of the
open at port one which is used for SOLT calibration. Connector reflection
coefficient deviations are not important for the high reflects SS and SO

because energy is reflected almost completely in the standards. Trans-
mission phase deviations are doubled for the high reflects because energy
has to transverse the connector twice. The connector of the load SL is
assumed to have a reflection coefficient deviation of RSOLT

11l from its mean
return loss, whereas the load element has been assumed to be perfect.
Imperfect load elements are not considered here, as only the influence
of connector deficiencies on calibration and measurement accuracy are of
interest. Note that the reflection term R is complex and describes the
phase and amplitude of the reflection coefficient deviation. The thru ST

contains influences of reflection coefficient and phase variations. Passivity
of the thru is maintained by the square root term. Since energy passes
the connector only once, length deviations occur only once in the formula.
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For thru reflect line (TRL) calibration standards with phase and am-
plitude deviations, the following S-parameters are used:

ST =









RTRL
11t

√

1 −
∣

∣RTRL
22t

∣

∣

2
e−jβLTRL

1t

√

1 −
∣

∣RTRL
11t

∣

∣

2
e−jβLTRL

1t RTRL
22t









(5.11)

SR =









−0.9e−2jβLTRL
1r 0

0 −0.9e−2jβLTRL
2r









(5.12)

SL =
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Θ RTRL
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(5.13)

Θ = e−jβ(L0+LTRL
1l +LTRL

2l ). (5.14)

The thru standard ST is exactly the same as for the SOLT calibration.
Influences of connector reflection coefficient and transmission phase devi-
ations on the reflect standard SR are treated in the same way as for high
reflect standards of the SOLT calibration. Reflection coefficient deviations
of the connectors of the line SL are treated in the same way as for the
thru. Transmission phase deviations for the line stem from two different
connectors, hence the phase is a superposition of two independent random
variables plus L0 = 5 mm, the length of the line.

For the case of a 1.85 mm calibration and subsequent adapter de-em-
bedding, the uncertainties on the adapters S-parameters contribute to the
overall measurement uncertainty. Their influence is

SAdL =









R11a 1

√

1 − |R11a| 0









(5.15)

SAdR =









0
√

1 − |R22a|

1 R22a









. (5.16)
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(5.17)

The random variables Riia model the distribution of the random part of
the connector reflection coefficient. The connection for the measurement
of the DUT is assumed to be error free. This assumption is made due
to the fact that all measurement methods require a connection between
VNA and DUT. It is not intended to compute the total measurement
uncertainty but to compare different calibration methods.

5.2.3 Test DUTs and the VNA

The following two DUTs were chosen as test DUTs:

SLR =









0.1 0.9

0.9 0.1









(5.18)

SHR =









0.9 0.1

0.1 0.9









. (5.19)

In the following these two devices will be called low reflect and high reflect
DUTs. The low reflect DUT is a device with low reflection coefficients
and high transmission coefficients, whereas the high reflect device exhibits
low transmission coefficients and high reflection coefficients. As already
mentioned, the connection between VNA and DUT is not taken into ac-
count, as the errors introduced by this connection are meaningless for the
intended comparison of calibration techniques.

The VNA introduces random errors to the calibration, but they are
neglected because they have much smaller influence on the calibration
results than the assumed variability of the connectors. In practice it was
found that even the values of the non random parts of the error terms
have negligible influence on the results of the MCS. The main effect on
the measurement uncertainty is due to the variance of the standards.

5.2.4 Monte Carlo Simulation

The impact of uncertain standards on calibration and measurement has
been simulated 50’000 times for each frequency point and for SOLT and
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Figure 5.2: Variance of S11 of the low reflect using TRL and SOLT calibrations.
Only phase errors are considered. Phase errors correspond to gap length
variations. Note that the data points for the real part of SOLT and TRL
calibration cover each other.

TRL calibrations using MUSE [18] and R [51]. The number of 50’000
samples for each frequency was determined in a convergence study. It was
found that 50’000 samples are sufficient to guarantee the first two digits
of the variance in Figs. 5.2-5.7. Calibrations with MMPX standards as
well as calibrations with 1.85 mm standards plus the subsequent 1.85 mm
to MMPX adapter de-embedding have been simulated. Low and high
reflect DUTs were used to point out the different qualities of the respective
calibration method. The frequency range is from 1 GHz up to 65 GHz.

Figures 5.2 to 5.5 show the measurement uncertainty resulting from
calibration with MMPX connector equipped standards, whereas Figs. 5.6
and 5.7 show measurement uncertainty resulting from 1.85 mm calibration
plus adapter de-embedding. By comparing both groups of graphs, one can
conclude that using the adapter de-embedding method is advantageous.

Figures 5.2 and 5.4 display the measurement uncertainty only due to
length variations in the transmission path. Surprisingly, in these figures
the TRL variance graph is very similar to a SOLT calibration variance
graph. If the electrical line length is outside of the range 20◦ . . . 160◦, thru
and line become too similar and the TRL calibration algorithm produces
large errors. This behavior is well known from [49] and occurs only if there
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Figure 5.3: Same result as in Fig. 5.2 but additionally reflection errors are
considered.

Figure 5.4: Variance of S21 of the high reflect using TRL and SOLT calibrations.
Only phase errors are considered. Phase errors correspond to gap length
variations.

are reflection coefficient variations in the S-parameters of the standards,
see Figs. 5.3 and 5.5.
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Figure 5.5: Same result as in Fig. 5.4 but additionally reflection errors are
considered.

Figure 5.6: Variance of S11 of the low reflect using TRL and SOLT calibrations
in combination with adapter de-embedding. Only reflection coefficient errors
of the 1.85 mm connectors have been considered. Note that the data points
for the real and imaginary part of the SOLT calibration cover each other.
The points for the real and imaginary part of the TRL calibration cover each
other partly.
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Figure 5.7: Variance of S21 of the high reflect using TRL and SOLT calibrations
in combination with adapter de-embedding. Only reflection coefficient errors
of the 1.85 mm connectors have been considered. Note that the data points
for the real and imaginary part of the SOLT calibration cover each other.
The points for the real and imaginary part of the TRL calibration cover each
other partly.

5.3 Adapter characterization

As described in the previous section, the use of a calibration kit with
industry grade connectors will introduce considerable error to the cali-
bration with each required connection, [52]. A better approach is cali-
brating the VNA with metrology grade connectors (e.g., a 1.85 mm cal-
ibration kit) and performing the measurements using accurately charac-
terized adapters. The accuracy of the adapter characterization is crucial
and depends on the number of industry grade connections involved in the
process.

Adapter characterization in general is addressed by a product note [53]
which describes a technique called adapter removal method, requiring a
complete two-port calibration for each connector family to characterize
the adapters. If, e.g., the SOLT method is applied, seven industry grade
connections are required. This number is too high and renders the adapter
removal method unsuitable for adapters with industry grade connectors.

Adapter characterization is also important in the field of noise tem-
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1.85 mm
Connector

Bead
Snap-on

Mechanism

Figure 5.8: Schematic representation of a beaded adapter joining a MMPX and
a 1.85 mm connector. The SOT method characterizes the 1.85 mm interface
and the bead by measurements, while the snap-on interface will be charac-
terized by simulation. The BA method characterizes the whole adapter by
measurements.

perature measurements. In this context [54] describes a one-port sliding
short method to characterize an adapter where only one industry grade
connection is required. However, the production of an accurate sliding
short for frequencies up to 65 GHz is very challenging.

An adapter characterization method requiring only short and open is
described in [55]. This reflective termination method only partly charac-
terizes the adapter. It is compared to both the adapter removal method of
[53] and the sliding short method of [54]. The uncertainties of the adapter
removal method are estimated to be larger than the uncertainties of the
reflective termination method which in turn shows larger uncertainties
than the sliding short method.

To overcome the shortcomings of the methods in [53] and [54], a two-
port adapter characterization method which requires only opens, shorts
and a thru connection between two adapters for their full characteriza-
tion is developed. An improvement of characterization accuracy can be
achieved by the BA method described in section 5.3.2, see [56]. Beadless
adapters show very low reflections and have a nearly ideal behavior as
opposed to the mechanically more robust beaded adapters. Finally, the
accuracy and the ease of use of both methods are compared.
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Figure 5.9: Signal flow graph of two reciprocal adapters with losses. Indices
indicate the number of the adapter. Adapter 1 is mounted to port 1 and
adapter 2 to port 2. The yet unknown S-parameters of the adapters are
denoted with an, bn and cn.

5.3.1 Short-Open-Thru Method

Adapters are passive components made of linear isotropic materials, see
Fig. 5.8. Thus one can consider adapters as reciprocal lossy two-ports.
Figure 5.9 shows the signal flow graph of two adapters mounted to two
VNA test ports. The latter are supposed to be calibrated with (metrology
grade) 1.85 mm connectors, whereas different devices will be attached to
the industry grade interface of the adapters. Note that the industry grade
interface is considered as part of the device under test and the influence
of the interface is not included in an, bn, cn (see Fig. 5.9).

Unlike the adapter removal method with SOLT calibration, the SOT
adapter characterization does not require a load with industry grade in-
terface due to the reciprocity of the adapter. This is an advantage because
manufacturing of a load for the given frequency range is difficult and the
number of required industry grade connections is reduced by omitting the
load. The center conductor and short plane of the still required short
standards with industry grade interface are lathed from a single piece
of metal, whereas the open standards consist of plain outer conductors
(see Fig. 5.10). Reflection coefficients of the opens and shorts including
the industry grade interface are computed using a numerical field solver1.
These simulations require to define the reference plane in a section where
only one mode exists, i.e., not in the mid of the interface (see Fig. 5.11).
As a consequence of this definition of the reference plane also the thru
connection is simulated.

1CST Microwave Studio Version 5.1.3 June 27. 2005
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Figure 5.10: MMPX standards for the SOT method. Opens are displayed in
the left column, whereas short standards are on the right side. In the upper
row, the female standards are shown, while male standards are in the lower
row.

Three measurements are needed to characterize the adapters with the
SOT method: First, shorts equipped with industry grade connectors
are measured with the adapters. Second, opens are measured with the
adapters. Third, the thru connection of both adapters is measured.

Based on the flow graph shown in Fig. 5.9 the SOT measurements are
described by the following set of equations:

S11MT + η1 = b1 + a2
1

S11T(1 − c2S22T) + S2
12Tc2

D
(5.20)

S12MT + η2 = a1a2
S12T

D
(5.21)

S22MT + η3 = b2 + a2
2

S22T(1 − c1S11T) + S2
12Tc1

D
(5.22)

S11MS + η4 = b1 + a2
1

S11S

1 − c1S11S
(5.23)
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Figure 5.11: Calibration standards used for SOT adapter characterization. One
pair of adapters is used for all three measurements. The reference planes of
the VNA are depicted as well as the reference planes for the simulation of the
standards.
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S22MS + η5 = b2 + a2
2

S22S

1 − c2S22S
(5.24)

S11MO + η6 = b1 + a2
1

S11O

1 − c1S11O
(5.25)

S22MO + η7 = b2 + a2
2

S22O

1 − c2S22O
(5.26)

D = 1 − c1S11T − c2S22T − c1c2S
2
12T + c1c2S11TS22T.

Here index M stands for measured values, whereas its absence indicates
standard (simulated) values. T signifies the thru, S the short, O the open
and an, bn, cn are the S-parameters of the adapters to be characterized.
The ηi denote the unavoidable measurement errors. This system of equa-
tions is over-determined and can be solved using a least squares approach
minimizing the sum of the errors

∑7
i=1 |ηi|2. Since the unknowns an,

bn, cn are nonlinear quantities, the lsqnonlin optimizer of the Matlab
Optimization Toolbox is used. Reasonable starting values are, e.g.,

a1 = a2 =
√

S12MT (5.27)

which physically correspond to phase-matched adapters with equal trans-
mission characteristics, small reflection terms c1 and c2 and S12T = 1 to
fulfill (5.21) with small error.

As already mentioned in the introduction of this section, initially the
parameters an, bn, cn do not include the influences of the industry grade
interface (see Fig. 5.11). The complete S-parameters of the adapter can
be obtained by appending the industry grade interface S11T,

√
S21T and√

S12T to adapter 1 and by putting S22T,
√

S21T and
√

S12T to adapter 2.
The results of this algorithm can be seen in Fig. 5.12 and Fig. 5.13.

5.3.2 Beadless Adapter Method

In contrast to the beaded adapters described in the previous section, bead-
less adapters show an (electrically) almost ideal behavior with very low
reflection. Their S-parameters are given with high accuracy by simple for-
mulae. But they are mechanically fragile and therefore not very suitable
for everyday use. However, for the characterization of beaded adapters
they open the way to a rather accurate procedure. Essentially, only three
thru measurements need to be performed. In the first measurement, both
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Figure 5.12: S21 of the adapter as a result of the SOT and BA methods. The
ripple in the transmission term is a result of poor calibration of the VNA and
reflections of the adapters.

beadless adapters are connected to form a thru connection. The second
measurement is a thru connection of a beadless adapter at port 1 and
a beaded adapter at port 2. For the third measurement, the beadless
adapter at port 1 is replaced with a beaded one and vice versa at port 2.

Specially manufactured beadless adapters are used for this adapter char-
acterization method, see Fig. 5.14. One can assume that the reflection
terms S11L1, S11L2, S22L1 and S22L2 of both beadless adapters are quite
small. If a simple eγl wave transmission through the beadless adapters
is assumed (with the propagation constant γ to be determined by mea-
surement), one can easily determine the S-parameters of both beadless
adapters:

γ =
ln(S21ML1L2)

l1 + l2
(5.28)

S21L1 = eγl1 = S12L1 (5.29)

S21L2 = eγl2 = S12L2 (5.30)

S11L1 = S22L1 = S11L2 = S22L2 = 0. (5.31)

Here S21ML1L2 signifies the measured transmission of both beadless adapters.
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Figure 5.13: S11 of the adapter at port 1 as a result of the SOT and BA method.
Beadless adapter characterization and the SOT method show large differences
for frequencies larger than 50GHz.

Figure 5.14: Beadless adapters between MMPX interface and 1.85 mm interface.
The length of the adapters was reduced to a minimum to reduce unwanted
reflections and to ease mounting of the adapters.

This model of the beadless adapter does not fully account for the influ-
ence of metrology grade interface, diameter transition and industry grade
interface. Reflections from the diameter transition and the connectors are
neglected because they are small compared to typical S-parameter mea-
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surement uncertainties of transparent devices, see [57]. The influence of
connectors and diameter transitions on the transmission coefficients of the
beadless adapters is approximated by (5.29) and (5.30).

If TB1 and TB2 denote the (yet unknown) T-matrices of beaded adapters,
the T-matrices of the aforementioned combinations of a beaded and a
beadless adapter can be written as TB1TL2 and TL1TB2 respectively.
Equating this with the measured T-matrices leads to

TB2 = T−1
L1 TML1B2, (5.32)

TB1 = TMB1L2T
−1
L2 . (5.33)

Here (5.32) uses the second measurement to de-embed the T-parameters
TB2 of the beaded adapter at port 2. Equation (5.33) de-embeds the
T-parameters TB1 of the beaded adapter at port 1 by using the third
measurement result. Finally, the T-parameters of the beaded adapters
can be converted back to the respective S-parameters. In Fig. 5.12 and
5.13, the results of the SOT method is compared with this approach.

5.3.3 Comparison

The number of industry grade connections required is an indicator for the
quality of the methods compared. The BA method requires 3 connections
for 2 adapters, whereas the SOT method requires 5 connections for the
same task. A second indicator, which confirms this initial estimation of
accuracy, is the difference between the measured and the computed thru
connection of two beaded adapters, see Fig. 5.15. Cascading the adapter
S-parameters resulting from one of the two methods yields a computed
thru connection. One would expect the SOT method to outperform the
BA method because the SOT characterization uses the thru connection as
a standard, but evidently this advantage of the SOT method is more than
compensated by its inaccuracies in measurement and standard definition.
Regarding the BA method, only the delicate connection process of the
beadless adapters is a drawback. Care must be taken to ensure that the
center conductors mate correctly during the connection process.
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Figure 5.15: Difference between the measured reflection at port 1 of a thru con-
nection of both beaded adapters S11MB1B2 and the results due to adapter char-
acterization and subsequent cascading of the two beaded adapters S11B1B2.
The superiority of the BA method is visible for frequencies larger than
30 GHz.



6 Conclusion

The main goal of this thesis is to make S-parameter measurements up to
70 GHz traceable. This means a mathematical model of the measurement
process is required.

A rather surprising fact is that there is apparently no solid mathemati-
cal theory about what mode is measured by a VNA. This comes from the
fact that proofs of completeness for the solution of Maxwell’s equations
are quite difficult in the case of lossy wave guides. Nonetheless, one practi-
cally knows that the fundamental mode is measured. The computation of
the fundamental mode requires the dimensions and material parameters
of the coaxial transmission line. While the fundamental modes of loss-
less and lossy smooth transmission lines are well-known, a new method
to compute the propagation constant of the fundamental mode in a lossy
rough line is presented in chapter two. The implications of roughness on
S-parameters are clearly described. While the impact of surface roughness
in the test port on the achievable accuracy of a VNA is rather small, it
has a noticeable impact on the propagation constant.

The accurate computation of the propagation constant plays a cru-
cial role in the computation of standards. Basically each standard which
contains a piece of rough transmission line can only be characterized if
the propagation constant is known. The possibly even more fundamen-
tal model of the slotted 1.85 mm connector is described in chapter three.
Starting with FDTD and FEM simulations of the connector, a database
lookup program is developed which computes the S-parameters of connec-
tors with arbitrary geometry within seconds. The simulations which were
used to build up the database are validated by comparison between FDTD
and FEM results. Chapter three concentrates on the characterization of
transmission line standards and offset shorts. The transmission line stan-
dards can be readily characterized by their connector geometry, diameter
profiles, conductivity and plating roughness parameters. The latter data
is used to compute the S-parameters of the line. The connector geome-
try is used to compute the S-parameters of the connector. Finally, the
complete S-parameters are computed by cascading the S-matrices of line
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and connector. For the offset shorts a similar approach is chosen. The
short plane is the only new element which has to be characterized. It
is characterized by its diameters and its conductivity. No other stan-
dards are computed because for coaxial calibration the offset short and
the transmission lines seem to be the most accurate, traceable standards.

Chapter four gives a new general theory of VNA calibration. First, a
model of the VNA measurement process is constructed. Thereby the def-
inition of the standards is assumed to be erroneous and the model of the
VNA is assumed to be incorrect. This model of how inaccuracies enter
the calibration process is new and results in advantageous properties like
robustness of the algorithm and better accuracy as other calibration al-
gorithms. These advantages are due to the fact that the used error model
is close to the physical reality. Defining random variables and modeling
the errors as probability density functions (pdfs) are prerequisites to the
construction of a pdf for the calibration coefficients via Bayes’ law. Now
one can take the mean value of this pdf to estimate the true VNA pa-
rameters. The numerical computation of this mean value requires the use
of nonlinear optimization techniques and Monte-Carlo integration. The
new calibration algorithm is compared to already known calibration al-
gorithms with synthetic and real data. Here synthetic data stands for
entirely simulated calibration scenarios, whereas real data refers to real
calibration scenarios. The new algorithm is more precise and accurate
than the other algorithms in all tested scenarios.

The new algorithm models the influence of several error sources on the
calibration result. In contrast to that, the calibration accuracy with snap-
on connectors is dominated by a single error source, namely the instable
transmission phase of the snap-on mechanism. In chapter five the impact
of this length variability on different VNA calibrations is investigated by
using Monte Carlo simulations (MCSs). Only very small accuracy can be
achieved with standard calibration methods. However, a calibration with
1.85 mm connectors followed by an adapter de-embedding yields higher
accuracy. For this reason two new adapter characterization techniques
are investigated. A first method relies on the standards short open and
thru connection, while the second, more accurate, method uses computa-
tionally characterized beadless adapters as standards. Both methods are
validated by the following test: First, two beaded adapters are character-
ized with the method under consideration. Next, the S-parameters of the
two beaded adapters are computed and measured. The difference between
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the computed and measured S-parameters indicates the accuracy of the
adapter characterization method.
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7 Outlook

This thesis provides the theory for traceable coaxial S-parameter mea-
surements up to 70 GHz. A direct extension of this work is the appli-
cation of the presented theory to slotted and slotless coaxial connectors
like the 3.5 mm, 2.92 mm, 2.4 mm and 1 mm connectors. Other VNA
measurement applications such as rectangular waveguide measurements
or on-wafer measurements can also benefit from the presented theory.

Concerning the computation of standards, the probably most evident
and useful extension would be to compute the S-parameters of other con-
nector families. This would help to reduce the uncertainty budget of
measurements with these connectors. At the same time, the standards
could be defined more accurately and connectors could be optimized for
lower return loss and higher repeatability.

The surface impedance computed with the MMP method can be used
to compute the propagation constant of rectangular and circular wave
guides. This is especially important for sub-THz applications which use
offset short calibration.

Another possibility is to develop new high precision standards. This
could result in standards which can produce several computable reflection
coefficients by changing the standard in a well controlled way. Hence one
could perform a calibration with only one connection. By repeated use
of such standards one could fully even out the random influence of the
connector.

While the presented calibration algorithm is capable of m-port calibra-
tions with arbitrary models of the VNA, such computations are prohibitive
in terms of computation time. More efficient algorithms which retain the
correct modeling of the errors in the standards and the VNA and thus
the robustness and accuracy of the presented algorithm could be devel-
oped for multi port calibrations. In this context existing Gibbs sampling
algorithms can be used.

The concept of adapter characterization and de-embedding could be
extended to other connector families. Substantial savings can be expected
from this method as several calibration kits for industry grade connectors

123



124 7 OUTLOOK

can be made obsolete with a set of well characterized adapters.



A S-parameters

S-parameters are always stated with respect to the characteristic im-
pedance of the ports under consideration. The characteristic impedance
depends, as stated in section 2.6, on the measured mode and the wave
guide. In other words, the test port adapters and the calibration kit deter-
mine the characteristic impedance of the calibrated VNA. It is necessary
to normalize the S-parameters to a reference impedance before comparing
S-parameters which are measured with VNAs calibrated with differing
calibration kits and test port adapters. Typical reference impedances are
Zref = 50 Ω and Zref = 75 Ω. The reference impedance can be chosen
arbitrarily and should not be mixed up with the characteristic impedance
which is based on the electromagnetic fields of the mode under consider-
ation.

According to [11] one can convert the S-matrices introduced in section
2.6 to an impedance matrix

Z = (I − U−1SU)−1(I + U−1SU)Zref (A.1)

which relates waveguide currents to waveguide voltages. Here I is the
unity matrix, U is a diagonal matrix

U = diag









√

Re
{

Zi
ref

}

|Zi
ref |









(A.2)

and Zref is a diagonal matrix with the reference impedances of all ports
Zi

ref as diagonal elements. Equation (A.1) can be used to adjust the
reference impedance of a given S-matrix by the following procedure. First,
one computes the impedance matrix. Then matrices U and Zref are built
according to the desired reference impedances. Finally, the new S-matrix
is computed

S = U(Z − Zref )(Z + Zref )−1U−1. (A.3)
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Another advantage of S-parameter notation is that the S-matrix of two
coupled DUTs can be computed from the S-matrices of the individual
DUTs. This can be achieved in a three step procedure. First, one adjusts
the reference impedances of the connecting ports to one impedance level.
Then the S-matrices of the DUT are combined to one system of equations.
Care must be taken that the scattered and incident wave quantities ~a and
~b of the connected ports are correctly stated. Rearranging of the system of
equations yields the combined S-matrix. In the case of two port devices,
the rearranging of the system of equations can be avoided by using T-
parameters. Two port S-parameters can be transformed to T-parameters
by

T =









−S11S22−S12S21

S21

S11

S21

−S22

S21

1
S21









. (A.4)

Note that S21 should not be zero for this transformation. T-parameter
matrices can be cascaded by matrix multiplication

Tc = TaTb. (A.5)

Where Ta and Tb are the individual T-matrices and Tc is the combined
T-matrix of DUTs a and b. The transformation from T-parameters to
S-parameters is

T =









T12

T22

T11T22−T12T21

T22

1
T22

−T21

T22









. (A.6)

Note that T22 should not be zero for this transformation.



B Hankel Functions

Hankel functions might be difficult to evaluate with Bessel and Neumann
functions for big arguments in the upper right complex plane because of a
loss of accuracy when adding Bessel and Neumann function. This problem
can be overcome by using the following asymptotic expansions

H(2)
n (z) ≈

√

2

πz
e−j(z−π

2 n−π
4 )

×
N

∑

k=0

1

(2jz)k

Γ(n + k + 0.5)

k!Γ(n − k + 0.5)
(B.1)

H(1)
n (z) ≈

√

2

πz
ej(z−π

2 n−π
4 )

×
N

∑

k=0

(−1)k

(2jz)k

Γ(n + k + 0.5)

k!Γ(n − k + 0.5)
. (B.2)

Where Γ is the Gamma function. The deviation from the actual value
is less than the last term in the sum. Note that increasing N does not
necessarily result in increased accuracy as this is an asymptotic expansion.
For the range of arguments useful for the problem of a coaxial line, a good
value for N has been N = 90 resulting in approximately 80 useful digits
for the Hankel function. See for further details [58].
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C Air Line Data

Special measurement adapters are used for the compressed length mea-
surements of the air lines. The special adapters consist of a male or female
connector fixed on a reference plate. First, the male and female special
adapters are connected to each other and the coupling nut is tightened
with the prescribed torque. Then the distance between the two reference
plates of the special adapters is measured with a laser interferometer.
Next, the air line is connected to the two special adapters. Thereby the
connectors are torqued down to the prescribed torque. The length of air
line plus special adapters is again measured with a laser interferometer.
Last, the length of the special adapters is subtracted from the previous
measurement result.

Torquing down the air lines connectors creates pressure on the mat-
ing planes. The pressure compresses the outer conductor between mating
plane and the point where the coupling nut makes contact to the outer
conductor. Length measurements in the compressed and uncompressed
state showed that compression can cause a length reduction of up to 6 µm
in a 1.85 mm air line. It is appropriate to use the compressed length be-
cause during VNA measurements the air line is in its compressed state.
The length measurements are conducted at 20◦ Celsius and are converted
to 23◦ Celsius via the thermal expansion coefficient of beryllium copper.
This is because dimensional laboratories work at 20◦ Celsius and electri-
cal laboratories work at 23◦ Celsius. The uncertainty of the compressed
length depends on the straightness of the transmission line. A typical U95
value is 3 µm.

Table C.1: 1.85 mm Air Lines Measurement

Length Inner Diameter Outer Diameter

14.9958 mm 0.8021 mm 1.8490 mm
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Table C.1: Continuation

Length Inner Diameter Outer Diameter

16.3499 mm 0.8031 mm 1.8481 mm

18.5760 mm 0.8020 mm 1.8498 mm

23.0732 mm 0.8029 mm 1.8513 mm

29.9756 mm 0.8006 mm 1.8494 mm

Mean 0.8021 mm 1.8495 mm

The diameters of the inner conductor are measured with a laser scan-
ner system at 23◦ Celsius. Here the U95 uncertainty is typically 1 µm.
The diameters of the outer conductor are measured with an air gauge at
23◦ Celsius. Here the U95 uncertainty is typically 1.5 µm. All mechani-
cal measurements listed in tables C.1 and C.2 are performed at METAS
Switzerland.

Table C.2: 2.4 mm Air Lines Measurement

Length Inner Diameter Outer Diameter

14.967 mm 1.0420 mm 2.3975 mm

17.493 mm 1.0425 mm 2.3975 mm

29.997 mm 1.0424 mm 2.3974 mm
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Table C.2: Continuation

Length Inner Diameter Outer Diameter

49.955 mm 1.0413 mm 2.3989 mm

Mean 1.0421 mm 2.3978 mm

The plating thickness of all transmission lines is a3−a1 = b1−b3 = 1 µm,
the average roughness height is a1 − a2 = b2 − b1 = 0.45 µm, the average
roughness period is p = 1 µm and the conductivity of the hard gold plating

is σ2 = 7.57×106 S
m. No reliable information about the conductivity of the

used beryllium copper were available. The input data, which is presented
in Table C.3, is compiled from length and diameter measurements, from
roughness parameters and from electrical parameters of the transmission
lines.

Table C.3: Air Lines Simulation

Hoffmann Hoffmann Daywitt Sanderson

2.4 mm 1.85 mm 1.85 mm 1.85 mm

ǫ1 1.000649ǫ0 1.000649ǫ0 1.000649ǫ0 1.000649ǫ0

µ1 µ0 µ0 µ0 µ0

ǫ2 ǫ0 − jσ2

ω ǫ0 − jσ2

ω ǫ0 − jσ2

ω ǫ0 − jσ2

ω

σ2 7.57×106 S
m 7.57×106 S

m 7.4×106 S
m 1.14×107 S

m
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Table C.3: Continuation

Hoffmann Hoffmann Daywitt Sanderson

µ2 µ0 µ0 µ0 µ0

ǫ3 ǫ0 − jσ3

ω ǫ0 − jσ3

ω - -

σ3 1.6×107 S
m 1.6×107 S

m - -

µ3 µ0 µ0 - -

a1 520.27 µm 400.32 µm - -

a2 519.82 µm 399.87 µm - -

a3 521.27 µm 401.32 µm 401.1 µm 401.32 µm

a4 520.82 µm 400.87 µm - 400.87 µm

b1 1199.7 µm 925.56 µm - -

b2 1200.1 µm 926.01 µm - -

b3 1198.7 µm 924.56 µm 924.8 µm 924.56 µm

b4 1199.1 µm 925.01 µm - 925.01 µm

p 1 µm 1 µm 1 µm 1 µm



D Unbiased Variance Optimal Estimator

According to [45] the estimator is unbiased if and only if
∫

Cn+q+lm2

(E(r′, s′d) − (v, s′u))p(r′|v, s′u, s′d) dr′ p(v, s′u) dv ds′u = 0 (D.1)

holds. This integral and the following integrals in this section are compo-
nentwise integrals over the whole complex plane. The order of integration
can be changed as the distribution p(r′, v, s′u|s′d) follows the conditions of
Fubini’s theorem, see [59]. Thus

∫

Clm2+n+q

(E(r′, s′d) − (v, s′u))p(v, s′u|r′, s′d) dv ds′u p(r′|s′d) dr′ = 0 (D.2)

holds as well. A stronger request would be
∫

Cn+q

(E(r′, s′d) − (v, s′u))p(v, s′u|r′, s′d) dv ds′u = 0. (D.3)

Now it is clear that an unbiased estimator of (v, s′u) is

E(r′, s′d) =

∫

Cn+q

(v, s′u)p(v, s′u|r′, s′d) dv ds′u. (D.4)

The variance of an estimator is

var =

∫

Cn+q+lm2

|E(r′, s′d) − (v, s′u)|2p(r′|v, s′u, s′d) dr′ p(v, s′u) dv ds′u. (D.5)

Similar to the already given argument for the unbiasedness the order of
integration is exchanged

var =

∫

Clm2+n+q

|E(r′, s′d) − (v, s′u)|2p(v, s′u|r′, s′d) dv ds′u p(r′|s′d) dr′. (D.6)
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As p(r′|s′d) is strictly positive it is equivalent to force

var′ =

∫

Cn+q

|E(r′, s′d) − (v, s′u)|2p(v, s′u|r′, s′d) dv ds′u (D.7)

to be minimal for all r′. This is already achieved by the unbiased E(r′, s′d).
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Symbol Description Unit

α angle [1]

A set of errors of VNA and standards [1]

a outer radius of center conductor [m]

a transmission parameter [1]

a forward mode amplitude [1]

A complex constant [1]

A coefficient matrix [1]

β complex angle [1]

b inner radius of outer conductor [m]

b reflection parameter [1]

b backward mode amplitude [1]

B complex constant [1]

C complex numbers [1]

c velocity of light in free space [m/s]

c reflection parameter [1]

csw slot width for capacity computation [m]

cs finger shift for capacity computation [m]

cd finger diameter for capacity computation [m]

cx coordinate in slotted section [m]

C capacitance [1/Ω s]

C′ capacitance per meter [1/Ω s m]

δ skin depth [m]

∆ derivative of error [1]

d distance [m]

d complex surface displacement [m]
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Symbol Description Unit

d diameter [m]

dh hole diameter [m]

dr equivalent inner diameter [m]

dc center conductor diameter [m]

dm male pin diameter [m]

η least squares error [1]

ǫ real permittivity [As/Vm]

ǫ complex permittivity [As/Vm]
~E complex electric field vector [V/m]

E complex error [1]

E() estimator [1]

f frequency [1/s]

fi female inner chamfer [m]

fo female outer chamfer [m]
~F complex electromagnetic field vector

F0 real constant [1]

γ propagation constant [1/m]

Γ reflection coefficient [1]

Γ() Gamma function [1]

g() system function of VNA [1]

g′() system function of VNA for all standards [1]

G conductivity [S]

G′ conductivity per meter [S / m]

G() inverted system function of VNA [1]

h roughness amplitude [m]

h transversal wave number [1/m]
~H complex magnetic field vector [A/m]

H(1)() Hankel function of first kind [1]

H(2)() Hankel function of second kind [1]

I current [A]
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Symbol Description Unit

j imaginary unit [j]

Jn n-th Bessel function [1]

k integer number [1]

k wave number [1/m]

l integer number [1]

l length [m]

L inductance [Ω/s]

L′ inductance per meter [Ω/s m]

LM location of local maximum [1]

Lxxx random length variable [m]

µ mean value [1]

µ permeability [Vs/Am]

m integer number [1]

mi male inner chamfer [m]

mo male outer chamfer [m]

n integer number [1]

N(µ, σ2) Gaussian distribution [1]

N integer number [1]

ω radial frequency [1/s]

π Pi [1]

φ angle [1]

∂ boundary

p() probability density function [1]

p period [m]

pg pin gap [m]

P power [W]

q integer number [1]

qn polynomial factors [1]

r radius [m]

r stable raw S-parameters [1]
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Symbol Description Unit

r′ stable raw S-parameters of all standards [1]

r̃ true raw S-parameters [1]

R resistance [Ω]

R′ resistance per meter [Ω/m]

Rxxx random reflection variable [1]

σ variance [1]

σ conductivity [S/m]

s S-parameters of standard [1]

s′ S-parameters of all standards [1]

s̃ true S-parameters of standard [1]

s′d known S-parameters of standards [1]

s̄′u estimate of standards’ parameters [1]

s′u unknown parameters of standards

sl slot length [m]

sw slot width [m]

S S-matrix [1]

S S-parameter [1]

S() S-parameter function of standard [1]

S port plane

T transmission matrix [1]

U voltage [V]

Uv,s′ set of uncertainties

U diagonal matrix [1]

v stable VNA parameters [1]

v̄ estimate of VNA parameters [1]

ṽ true VNA parameters [1]

var variance [1]

x x-coordinate [m]
~X residual electromagnetic field

y y-coordinate [m]
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Y ′ admittance per meter [S/ m]

z z-coordinate [m]

Z0 characteristic impedance [Ω]

Z linear combination of Hankel functions [1]

Z ′ impedance per meter [Ω/m]

Zs surface impedance [Ω]

Z characteristic free space impedance [Ω]

Z Impedance matrix [Ω]

Zref Reference impedance matrix [Ω]
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Laboratory for Electromagnetic Fields and Mi-
crowave Electronics
Doctorate in Electrical Engineering
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